期刊文献+

基于室内供暖温度调控的数学建模研究 被引量:1

Study on Mathematical Modeling Based on Indoor Heating Temperature Control
下载PDF
导出
摘要 冬季北方部分地区采取热水供热的供暖方式,研究如何控制进水流量使得室内温度维持在一个相对稳定的范围具有实际意义。针对空间温度分布问题,本文将三维空间节点化,建立了空间节点控制模型,将空间节点分为热源节点与非热源节点,分别基于热传导方程与非热源节点由雅可比迭代法进行求解,得到该房间各高度所在平面的温度分布图可知,从南北方向来看,每个高度的分布图都呈现靠近南、北墙两端温度相对较高、中间相对较低分布;而从东西方向来看,则呈现中间温度相对较高、两端温度相对较低的分布。另外,高度越高,热量分布相对越均匀。针对当水流量变化的问题,我们对暖气片产热量进行修正,以0.1m^(3)/h为间隔求解不同进水流量的出水温度,然后利用空间节点控制模型求解房间的动态温度分布,得到平均温度随水流量的变化趋势:随着进水口流量每增加温度提高的幅度逐渐变小。对于最小耗水量问题,本文以最小累计耗水量为单一目标,在约束条件下进行求解。并在室内平均温度为21℃、标准差为1.5℃、进水口流量在0.1-1.0m^(3)/h的约束条件利用lingo求解得到最小进水量为13.59m^(3)。 In winter,some parts of northern China adopt the hot water heating mode,and it is of practical significance to study how to control the inflow flow to maintain the indoor temperature in a relatively stable range.In view of spatial temperature distribution,a spatial node control model is established to divide spatial nodes into heat source and non-heat source nodes and solve the heat distribution equation with relatively high temperature distribution at the ends of the south and north wall;from the east-west direction,the distribution with relatively high intermediate temperature and relatively low temperature at each end.In addition,the higher the height,the more evenly the heat distribution is.When the problem of water flow change,we correct the radiator heat production,with 0.1 m3/h as the interval of different inlet water temperature,and then use the space node control model to solve the dynamic temperature distribution of the room,the average temperature with water flow trend:as the inlet flow each increase temperature increase gradually smaller.For the minimum water consumption problem,the minimum cumulative water consumption as a single goal is solved under constraints.The average indoor temperature of 21℃,standard deviation of 1.5℃and water inlet flow of 0.1-1.0m3/h were solved by lingo to obtain the minimum water inflow of 13.59m3.
作者 王嗣淇 邓睿翔 颜志雄 佟东霖 Wang Siqi;Deng Ruixiang;Yan Zhixiong;Tong Donglin(Nanjing University of Information Science&Technology School of Artificial Intelligence,Nanjing 210044,China;Nanjing University of Information Science&Technology School of Automation,Nanjing 210044,China;Nanjing University of Information Science&Technology School of Atmospheric sciences,Nanjing 210044,China)
出处 《科学技术创新》 2022年第17期81-84,共4页 Scientific and Technological Innovation
关键词 温度分布 傅里叶热传导定律 能量守恒定律 雅克比迭代 单一目标规划 Temperature distribution Fourier heat conduction law Energy conservation law Jacobi iterative Single goal planning
  • 相关文献

参考文献3

二级参考文献16

  • 1齐承英,高俊茹,方立德,尹娟.新型智能供热计量控制系统[J].暖通空调,2004,34(10):103-105. 被引量:18
  • 2李建兴 涂光备 周志华.不同测试方法下散热器热特性方程比较[C]..全国暖通空调制冷2004学术年会论文摘要集[C].,2004..
  • 3Han T Y.Three-dimensional navier-stokes simulation for pas- senger compartment cooling[ J]. International Journal of Ve- hicle Design, 1989,10 (2) : 175 - 186.
  • 4Drescher H P, Deuster M. Innovative two-dimensional gas temperature measurement using acoustic pyrometry[ C]//8th International Symposium on Temperature and Thermal Meas- urements in Industry and Science. 2001 : 1077 - 1082.
  • 5Ames W F. Numerical Methods for Partial Differential Equa- tions [ M ]. New York : Academic Press, 2014.
  • 6Azmi W H, Sharma K V, Sarma P K, et al. Numerical valida- tion of experimental heat transfer coefficient with SiO2 nanofluid flowing in a tube with twisted tape inserts [ J ]. Ap- plied Thermal Engineering,2014,73 (1) :296 -306.
  • 7Dai W, Nassar R. A second-order ADI scheme for three-di- mensional parabolic differential equations [ J ]. Numerical Methods for Partial Differential Equations, 1998,14 (2).
  • 8Zimparov V. Prediction of friction factors and heat transfer coefficients for turbulent flow in corrugated tubes combined with twisted tape inserts ( Part 2 ) : heat transfer coefficients [ J ]. International Journal of Heat and Mass Transfer,2004, 47(2) :385 -393.
  • 9Jiang W, Shen L F, Chen D, et al. An extended FDTD meth- od with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers [ J ]. Journal of Lightwave Technology,2006,24 ( 11 ) :4417 - 4423.
  • 10Shajari P S, Ivaz K. Nine point muhistep methods for linear transport equation [ J ]. Journal of Concrete and Applicable Mathematics,2013,11 (2) :183 - 189.

共引文献7

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部