期刊文献+

基于三维模型重构的花生网纹厚度性状QTL分析

QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods
下载PDF
导出
摘要 荚果网纹厚度,不仅是花生重要的品种特性,也与花生适宜机械化收获特性密切相关。为探索花生荚果网纹厚度遗传基础,本研究开发了一种基于三维模型重构测定网纹厚度的方法,并且以品种花育36号和品系6-13配组衍生的181个重组自交系(recombinant inbred line,RIL)群体为材料,考察了该RIL群体2019—2020年在山东青岛、东营和威海3个环境下表型数据。结果表明,横向和纵向网纹厚度在RIL群体中均表现为连续分布和超亲遗传,广义遗传率分别为0.92和0.91。利用前期构建的高密度遗传图谱,共定位到11个与网纹厚度相关加性QTL,其中6个与横纹厚度相关,5个与纵纹厚度相关,表型贡献率范围为5.21%~11.06%。定位到2个主效位点qLA2和qLO9,可在不同环境下表达,其增效等位基因分别来自花育36号和6-13。共定位到22对上位性QTL,共涉及34个位点,表型贡献率范围为0.55%~4.37%,其中10对与横纹厚度相关,12对与纵纹厚度相关。本研究结果将为花生相关性状基因定位和分子育种提供重要的参考。 The thickness of pod reticulation is not only an important criterion of peanut taxonomy,but also an agronomy trait related to peanut mechanical harvesting.To explore the genetic mechanism of reticulation thickness of peanut pods,a novel phenotyping method was developed to determine the reticulation thickness through reconstructing three dimensional(3D)models of pods.Meanwhile,a recombinant inbred line(RIL)population(181 lines)was derived from a cross between Huayu 36 and 6-13and planted in three environments from 2019 to 2020,including Qingdao,Dongying,and Weihai of Shandong province.Phenotypic data of the RIL population were collected from these three environments.Two related traits,thicknesses of latitudinal and longitudinal protuberant veins(reticulations),had continuous and transgressive distributions in the RIL population,with broad-sense heritablities of 0.92 and 0.91,respectively.Based on a previous high density genetic map,a total of 11 additive QTLs were identified explaining phenotypic variations of 5.21%–11.06%,among which six QTLs were related to thickness of latitudinal protuberant vein and five related to thickness of longitudinal protuberant vein.Two major loci,qLA2 and q LO9 could be detected in more than one environments,with contributing alleles coming from Huayu 36 and 6-13,respectively.A total of 22 pairs of epistatic QTLs involving 34 loci were identified explaining phenotypic variations of 0.55%–4.37%,among which 10 pairs of interactions were related to thickness of latitudinal protuberant vein and 12 pairs were related to thickness of longitudinal protuberant vein.These results provide valuable information for further gene mapping and molecular breeding in peanut.
作者 张胜忠 胡晓辉 慈敦伟 杨伟强 王菲菲 邱俊兰 张天雨 钟文 于豪諒 孙冬平 邵战功 苗华荣 陈静 ZHANG Sheng-Zhong;HU Xiao-Hui;CI Dun-Wei;YANG Wei-Qiang;WANG Fei-Fei;QIU Jun-Lan;ZHANG Tian-Yu;ZHONG Wen;YU Hao-Liang;SUN Dong-Ping;SHAO Zhan-Gong;MIAO Hua-Rong;CHEN Jing(Shandong Peanut Research Institute,Qingdao 266100,Shandong,China;Weihai Seed Management Station,Weihai 264200,Shandong,China;Shandong Seed Administration Station,Jinan 250100,Shandong,China;Yantai Fenglin Foodstuff Co.,Ltd,Yantai 264108,Shandong,China;Agricultural and Rural Bureau of Laixi City,Qingdao 266600,Shandong,China)
出处 《作物学报》 CAS CSCD 北大核心 2022年第8期1894-1904,共11页 Acta Agronomica Sinica
基金 国家自然科学基金项目(32001584) 山东省农业良种工程(2020LZGC001) 山东省农业科学院创新工程(CXGC2021A09,CXGC2021A46) 青岛市科技惠民示范引导专项(20-3-4-26-nsh)资助。
关键词 花生 荚果网纹 QTL 加性 上位性 peanut pod reticulation QTLs additive epistatic
  • 相关文献

参考文献4

二级参考文献80

  • 1魏志刚,杨传平,潘华.利用多元回归分析鉴定与白桦纤维长度性状相关的分子标记[J].分子植物育种,2006,4(6):835-840. 被引量:9
  • 2艾海舟,兴军亮.计算机视觉-算法与应用[M].北京:清华大学出版社,2012:332-358.
  • 3方宣钧,吴为人,唐纪良.作物DNA分子辅助育种.北京:科学出版社,2002.PP41-45.
  • 4Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281-291.
  • 5Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996 2:225-238.
  • 6Khedikar Y P, Gowda M V C, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 2010, 121:971-984.
  • 7Chu Y, Wu C L, Holbrook C C, Tillman B L, Person C: Ozias-Akins E Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 2011, 4:110-117.
  • 8Gautami B, Pandey M K, Vadez V, Nigam S N, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda M V C, Narasu M L, Hoisington D A, Knapp S J, Varshney R K. Quantitative trait lo- cus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Araehis hypogaea L.). Mol Breed, 2012, 30:757-772.
  • 9Sujay V, Gowda M V, Pandey M K, Bhat R S, Khedikar Y P, Nadaf H L, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T, Knapp S J, Varshney P K. Quantitative trait lo- cus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line popula- tions in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012, 30:773-788.
  • 10Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant BioL 2012, 12:26.

共引文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部