期刊文献+

基于集成学习算法的消费行为预测 被引量:4

Consumer Behavior Prediction Based on Ensemble Learning Algorithm
下载PDF
导出
摘要 消费行为预测在营销活动中具有重要的价值,其预测效果主要取决于特征工程与算法建模。通过特征提取与新特征发现,提出定长与变长滑动窗口相结合的特征提取方法和基于先验知识与矩阵分解的特征交叉方法。特征提取方法考虑样本不平衡和用户消费习惯,提取更多的样本数据并给特征加上时间属性,而特征交叉方法考虑商品与用户之间隐含的关联关系,提取有关联的新特征。对于单一模型预测效果较差的问题,采用stacking策略构建集成学习模型,以XGBoost、随机森林和梯度提升决策树作为初级学习器对特征进行变换,以逻辑回归作为元学习器对用户消费行为进行预测。实验结果表明,该特征工程方法在多个模型算法中均能明显提高精准率,该集成学习模型预测效果要比单个模型更好。 The prediction of consumption behavior is of great value in marketing activities, and its prediction effect mainly depends on feature engineering and algorithm modeling. Through feature extraction and new feature discovery, the feature extraction method combining fixed length and variable length sliding window and feature intersection method based on prior knowledge and matrix decomposition are proposed. Feature extraction method takes sample imbalance and consumer habits into account, extracts more sample data and adds time attribute to features. Feature intersection method takes the implicit relationship between goods and users into account to extract new features with relevance. For the first mock exam, the stacking model is used to build the ensemble learning model. The XGBoost, random forest and gradient decision tree are used as primary learning devices to transform the features, and logistic regression is used as a meta learning device to predict user consumption behavior. The experimental results show that the feature engineering method can improve the accuracy of the algorithm in many models, and the prediction effect of the integrated learning model is better than that of a single model.
作者 贾志强 李涛 乐金祥 JIA Zhi-qiang;LI Tao;YUE Jin-xiang(School of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《计算机技术与发展》 2022年第5期141-146,共6页 Computer Technology and Development
基金 国家自然科学基金资助项目(61702383) 湖北省教育厅重大项目(17ZD014)。
关键词 行为预测 特征工程 算法建模 stacking策略 集成学习 behavior prediction feature engineering algorithm modeling stacking strategy ensemble learning
  • 相关文献

参考文献8

二级参考文献74

  • 1王纯麟,何建敏,钱苏丽.基于组合分类器的个人信用评估模型[J].现代管理科学,2006(11):13-14. 被引量:2
  • 2戴小河.2015年中国医药行业四大领域孕育投资机会[EB/OL](.2014-12-22)[2015-08-30].http://www.stcn.com/2014/1222/11922170.shtml.
  • 3马飞.零售集中度升级换档加速[N].医药经济报,2015-03-30(A05).
  • 4张博.传统药店或临关闭潮[N].中国医药报,2015-01-20(008).
  • 5赵宇飞.医药电商蓬勃兴起,发展壮大还需迈过几道坎[EB/OL].(2014-12-28)[2015-12-20].http://news.xinhuanet.com/2014-12/28/c_1113802477.html.
  • 6中国医药物资协会.2014年中国医药互联网发展报告[EB/OL].(2015-02-04)[2015-12-10].http://news.pharmnet.com.cn/news/2015/02/04/414179.html.
  • 7Fancia.传统药店迎来关店潮[EB/OL].(2015-01-06)[2015-10-30].http://www.ydzz.com/news.php?col=67&file=52714.39.
  • 8张博.药房关张大潮汹涌,药企开始剥离线下渠道[N].中国企业报,2015-01-06(14).
  • 9张敏.医药电商且行且观望,五大拦路虎还未解决[N].证券日报,2015-01-12(B04).
  • 10李从选.连锁营销:新年新方向[N].医药经济报,2015-02-16(005).

共引文献115

同被引文献33

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部