期刊文献+

基于人工智能LSTM循环神经网络的学习成绩预测 被引量:2

The Evaluation and Prediction of Academic Performance Based on Artificial Intelligence and LSTM
下载PDF
导出
摘要 学习成绩预测能够助力学生课业学习、提升教师教学能力、协助学校评估教学质量和优化教学管理,已成为教育领域研究的热点与难点。文章以学生各阶段历史成绩为基础,结合考勤、宿舍卫生、校园纪律等行为特征数据,利用人工智能LSTM循环神经网络模型对课程成绩进行预测。基于预测课程的成绩,可以对存在潜在挂科风险的学生提出学业警示;对教师改进教学方法、优选教学手段、优化教学过程、提高教学质量提供帮助;同时协助学校开展教学管理进而预防教学事故的发生。实验结果表明,该方法能较准确地预测学生的课程成绩,具有一定的有效性和实用性。 In order to serve students’learning,improve teachers’teaching ability and evaluate the quality of teaching,and optimize the teaching management,LSTM recurrent neural network model is used to predict students’course achievements based on the past achievements,attendance data,records of dormitory sanitation and violations of school rules of students.The experimental results show that the method can accurately predict the students’course performance with availability and practicability.The predicted results can warn the students who may fail the course,provide some suggestions for teachers to improve the teaching methods and means,assist the school to carry out teaching management,and prevent teaching accidents.This research has popularization and application value to a certain extent.
作者 未晛 Xian WEI(Beijing Vocational College of Labor and Social Security,Beijing 100029)
出处 《中国教育信息化》 2022年第4期123-128,共6页 Chinese Journal of ICT in Education
基金 2020年度北京劳动保障职业学院课题“人工智能背景下贯通培养项目基础文化教育研究”(编号:2020406)。
关键词 人工智能 LSTM循环神经网络 成绩预测 教学质量 Artificial intelligence LSTM Prediction of academic performance Education quality
  • 相关文献

参考文献9

二级参考文献69

  • 1黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 2韩向峰,刘希玉.基于Web挖掘的高考预测系统的设计与实现[J].计算机应用研究,2004,21(8):160-162. 被引量:3
  • 3张向阳,刘鸣.贝叶斯推理研究综述[J].心理科学进展,2002,10(4):388-394. 被引量:13
  • 4Baker B M, & Ayechew M A. A genetic algorithm for the vehicle routing problem [J]. Computers & Operations Re- search, 2003(30):787-800.
  • 5Quan Yuan, Feng Qian, Wenli Du. A hybrid genetic al- gorithm with the Baldwin effect [J]. Information Sciences, 2010(180):640-652.
  • 6胡良剑,孙晓君.MATLAB数学实验[M].北京:高等教育出版社,2009:257—273.
  • 7MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 8MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 9李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 1010 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.

共引文献1102

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部