期刊文献+

一种无监督的轴承健康指标及早期故障检测方法 被引量:12

An Unsupervised Bearing Health Indicator and Early Fault Detection Method
下载PDF
导出
摘要 提出了一种无监督的轴承健康指标及早期故障检测方法。设计了一种可以有效提取轴承状态特征的深度可分离卷积自编码器模型,以编码器的输出作为轴承状态特征表示,使用Bray-Curtis距离计算退化状态特征和健康状态特征之间的距离作为轴承状态的健康指标(BC-HI)。基于健康指标BC-HI提出了一种结合Savitzky-Golay滤波的早期故障检测方法,根据健康指标的趋势获取异常阈值,判断早期故障的发生。为验证所提方法的有效性及泛化能力,在轴承加速寿命试验数据集上进行试验,试验结果表明提出的健康指标可以反映轴承的退化趋势,并且对早期故障较为敏感,具有较强的泛化能力,与孤立森林、支持向量机等方法相比,首次故障检测时间更加提前,误报警率更低,具有一定的应用价值。 A method of unsupervised bearing health indicator and early fault detection was proposed.A deep separable convolutional auto-encoder model was designed to effectively extract bearing state features,where the outputs of the encoder were used as bearing state features.Then,the Bray-Curtis distance was used to calculate the distance between the degenerated state features and the healthy state features as the bearing state health indicator(BC-HI).An early fault detection method combined with Savitzky-Golay filter was proposed based on BC-HI.The abnormal threshold was obtained according to the trend of health indicators to judge the occurrence of early faults.In order to verify the effectiveness and generalization ability of the proposed method,the experiments were carried out on datasets of bearing accelerated life tests.The experimental results show that the health indicator proposed may reflect the degradation trend of bearings,and is sensitive to early faults,and has strong generalization ability.Compared with the methods such as isolated forest and support vector machine,the first fault detection time is earlier and the false alarm rate is lower,so it has certain application values.
作者 赵志宏 李乐豪 杨绍普 李晴 ZHAO Zhihong;LI Lehao;YANG Shaopu;LI Qing(State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety,Shijiazhuang Railway Institute,Shijiazhuang,050043;School of Computation and Informatics,Shijiazhuang Railway Institute,Shijiazhuang,050043)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2022年第10期1234-1243,共10页 China Mechanical Engineering
基金 国家自然科学基金(11972236,11790282)。
关键词 健康指标 早期故障检测 深度可分离卷积 Savitzky-Golay滤波器 自编码器 health indicator early fault detection depth separable convolution Savitzky-Golay filter auto-encoder
  • 相关文献

参考文献16

二级参考文献112

  • 1邬红娟,任江红,卢媛媛.武汉市湖泊浮游植物群落排序及水质生态评价[J].湖泊科学,2007,19(1):87-91. 被引量:13
  • 2GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 3HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 5BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 6WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 7BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 8ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 10JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.

共引文献714

同被引文献103

引证文献12

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部