摘要
风电叶片延长是在低风速区提高风力发电机年发电量最有效的方法,目前普遍采用结构胶粘接的方式实现叶片与延长节的连接,其疲劳性能决定了延长节运行的稳定性,高效准确的疲劳分析方法对工程应用尤为重要。为此,通过有限元方法,分别建立了全尺寸壳单元、叶尖局部实体单元和全尺寸壳与实体单元结合模型。研究结果表明,应变等效剪切应力的方法偏于保守,而壳与实体单元结合模型方法是一种相对高效准确的风电叶片延长节结构胶疲劳强度分析方法。基于此方法计算了某实际运行风电叶片延长节结构胶的疲劳强度,满足GL标准要求。
The extending blades of wind turbine is the most effective way to improve the annual power generation in low speed wind. At present, the connection of the blades and extension is generally achieved by structural adhesive. The fatigue performance determines the stability of extending blades, and an efficient and accurate analysis method is especially important for engineering application. To this end, the shell element, the solid element, the shell & solid element model are built by the finite element method. The results show that the strain equivalent shear stress method is conservative, and the shell & solid element model is a relatively efficient and exact method for analyzing wind turbine blades extension structural adhesive fatigue strength. Based on this method, the fatigue strength of wind turbine blades extension structural adhesive is satisfied with GL 2010.
作者
袁巍华
张菊芳
陈文光
李军向
YUAN Wei-hua;ZHANG Ju-fang;CHEN Wen-guang;LI Jun-xiang(Ming Yang Smart Energy Group Co.,Ltd.,Zhongshan 528437,China)
出处
《复合材料科学与工程》
CAS
北大核心
2022年第4期27-31,共5页
Composites Science and Engineering
关键词
风电叶片延长节
结构胶
疲劳强度
实体单元
有限元
复合材料
wind turbine blades extension
structural adhesive
fatigue strength
solid element
finite element
composites