期刊文献+

TSV结构对环形物质波波导的影响

Effect of TSV structure on ring matter wave guide
下载PDF
导出
摘要 由于需要外部电源的接入,传统芯片上的环形结构的物质波波导无法形成完全封闭的环形结构,其产生的环形磁阱存在天然缺陷,阻碍了对冷原子的有效操控。利用硅通孔(TSV)技术能够在垂直于原子芯片表面方向接入导线,有望降低接入导线对环形磁阱的影响。本文通过有限元方法对基于TSV技术的环形原子物质波波导进行仿真研究,对导线加载电流时的磁场进行仿真分析,并系统研究了TSV横截面形状、通孔深度、通孔间隙等因素对环形导线所产生磁阱的影响。最终结合仿真结果,设计一种在加工工艺上切实可行的基于TSV结构的环形波导原子芯片。 Due to the need for external power supply,the conventional matter wave guide on chip with the ring structure cannot form a perfectly closed ring.The defects naturally exist in the generated ring magnetic trap,which hinds the effective manipulation of cold atom.Using Through-Silicon Via(TSV)technology could insert wires perpendicular to the surface of the atom chip,potentially reducing the impact of the inserted wires on the ring magnetic trap.Here a ring atomic matter wave guide based on TSV technology is modeled via finite element method.The magnetic fields produced by the wires with various loading current are analyzed.The effects of the cross-sectional shape,the depth,and the gap of the TSV on the magnetic trap produced by the ring wire are systematically studied.Finally,combined with the simulation results,a ring waveguide atomic chip based on TSV structure that is feasible in processing technology is designed.
作者 罗小嘉 杨丽君 罗俊杰 LUO Xiaojia;YANG Lijun;LUO Junjie(Institute of Electronic Engineering,China Academy of Engineering Physics,Chengdu Sichuan 610200,China;Microsystem and Terahertz Research Center,Chengdu Sichuan 610200,China)
出处 《太赫兹科学与电子信息学报》 2022年第5期506-512,共7页 Journal of Terahertz Science and Electronic Information Technology
关键词 环形物质波波导 原子芯片 磁阱 硅通孔 ring matter wave guide atom chip magnetic trap Through-Silicon Via
  • 相关文献

参考文献3

二级参考文献68

  • 1Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518.
  • 2Gupta S, Dieckmann K, Hadzibabic Z, Pritchard D E 2002 Phys. Rev. Lett. 89 140401.
  • 3Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Bord@ C J, Landragin A, Bouyer P 2006 Phys. Rev. Lett. 97 010402.
  • 4Zhou M K, Duan X C, Chen L L, Luo Q, Xu Y Y, Hu Z K 2015 Chin. Phys. B 24 050401.
  • 5Wang Y J, Anderson D Z, Bright V M, Cornell E A, Diot Q, Kishimoto T, Prentiss M, Saravanan R A, Segal S R, Wu S 2005 Phys. Rev. Lett. 94 090405.
  • 6Snadden M J, Mcguirk J M, Bouyer P, Haritos K G, Kasevich M A 1998 Phys. Rev. Lett. 81 971.
  • 7Tang B, Zhang B, Zhou L, Wang J, Zhan M 2015 Eur. Phys. J. D 69 233.
  • 8Barrett B, Geiger R, Dutta I, Meunier M, Canuel B, Gauguet A, Bouyer P, Landragin A 2014 C. R. Physique 15 875.
  • 9Wu S, Su E, Prentiss M 2007 Phys. Rev. Lett. 99 173201.
  • 10Geiger R, Menoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bres- son A, Landragin A, Bouyer P 2011 Nat. Commun. 2 474.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部