摘要
用上下解方法和拓扑度理论讨论带参数的非线性简单支撑静态梁方程y^(″″)(x)+(k 1+k 2)y^(″)(x)+k 1k 2y(x)=λf(x,y(x)),0<x<1,y(0)=y(1)=y″(0)=y″(1)=0正解的存在性和多解性,其中:λ>0是一个参数;k 1<k 2<0,k 1,k 2均为实常数;f:[0,1]×[0,∞)→(0,∞)为连续函数,且f(x,y)对固定的x∈[0,1]关于y单调增.
By using the methods of upper and lower solutions and topological degree theory,the author discusses the existence and multiplicity of positive solutions for the nonlinear simply supported static beam equations with a parameter y^(″″)(x)+(k 1+k 2)y^(″)(x)+k 1k 2y(x)=λf(x,y(x)),0<x<1,y(0)=y(1)=y^(″)(0)=y^(″)(1)=0,whereλ>0 is a parameter,k 1<k 2<0,k 1 and k 2 are real constants,f:[0,1]×[0,∞)→(0,∞)is a continuous function,and f(x,y)monotonically increases with respect to y for a fixed x∈[0,1].
作者
吴梦丽
WU Mengli(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2022年第2期219-224,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:12061064).
关键词
正解
存在性
多解性
上下解
拓扑度
positive solution
existence
multiplicity
upper and lower solutions
topological degree