期刊文献+

弱幂等Quantale范畴与相关范畴的关系

Relationships between Category of Weakly IdempotentQuantales and Related Categories
下载PDF
导出
摘要 首先引入弱幂等Quantale及Quantale上弱幂等核映射的概念,给出Quantale的最大弱幂等商的等价刻画;然后证明弱幂等Quantale范畴是Quantale范畴的反射子范畴,幂等Quantale范畴是弱幂等Quantale范畴的反射子范畴;最后得到幂等Quantale范畴是Quantale范畴的反射子范畴. Firstly,by introducing the concepts of a weakly idempotent quantale and a weakly idempotent nucleus on a quantale,we gave an equivalent characterization for the largest weakly idempotent quantale quotient.Secondly,we proved that the category of weakly idempotent quantales was a reflective subcategory of the category of quantales,the category of idempotent quantales was a reflective subcategory of the category of weakly idempotent quantales.Finally,we obtained that the category of idempotent quantales was a reflective subcategory of the category of quantales.
作者 刘敏 杜佳慧 LIU Min;DU Jiahui(School of Sciences,Chang’an University,Xi’an 710064,China)
机构地区 长安大学理学院
出处 《吉林大学学报(理学版)》 CAS 北大核心 2022年第2期277-283,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11871320) 陕西省自然科学基础研究计划项目(批准号:2022JM-032).
关键词 Quantale商 弱幂等Quantale 弱幂等核映射 范畴 quantale quotient weakly idempotent quantale weakly idempotent nucleus category
  • 相关文献

参考文献4

二级参考文献28

  • 1刘智斌,赵彬.Quantale范畴的代数性[J].数学学报(中文版),2006,49(6):1253-1258. 被引量:13
  • 2Adamek, J., Herrlich, H. and Strecker, G. E., Abstract and Concrete Categories, The Joy of Cats, John Wiley & Sons, New York, 1990.
  • 3Bonsangue, M., Breugel, F. and Rutten, J. J. M. M., Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding, Theoret. Comput. Sci.193, 1998, 1-51.
  • 4Borceux, F., Handbook of Categorical Algebra, Vol. 2, Categories and Structures, Cambridge University Press, Cambridge, 1994.
  • 5Eilenberg, S. and Kelly, G. M., Closed categories, Proceedings of the Conference on Categorical Algebra, La Jolla 1965, Springer, Berlin, 1966, 421-562.
  • 6Gierz, G., Hofmann, K. H., et al., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003.
  • 7Hohle, U., Commutative, residuated l-monoids, Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory, U. Hohle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
  • 8Kelly, G. M., Basic Concepts of Enriched Category Theory, London Mathematical Soceity Lecture Notes Series 64, Cambridge University Press, Cambridge, 1982.
  • 9Klement, E. P., Mesiar, R. and Pap, E., Triangular Norms, Trends in Logic, Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.
  • 10Lawvere, F. W., Metric spaces, generalized logic, and closed categories, Rend. Sere. Mat. Fis. Milano, 43, 1973, 135-166.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部