摘要
可信网络终端数据具有不确定性、复杂的特性,导致评估结果具有片面性,同时缺乏安全可靠的数据采集机制,评估结果无法揭露恶意用户经过篡改或伪装数据,使得服务提供者通过评估结果来辨识服务的可信度不可靠。针对以上问题,在GEP-CPN模型的研究中,引入区块链的数据溯源机制,构建智能化的可信预测分类,确保对网络终端用户行为进行可评估可预测,最终达到对用户行为进行安全管理。经过应用分析,基于改进的GEP-CPN模型的预测终端行为架构应用产生的结果能够使整个信任体系有良性的发展。
Trusted network terminal data has the characteristics of uncertainty and complexity,leading to one-sided evaluation results.And there is a lack of a safe and reliable data collection mechanism,the evaluation results cannot reveal that malicious users have tampered with or disguised data,making the credibility of the identification of service providers unreliable.Above problems,in the research of the GEP-CPN model,the data traceability mechanism of the blockchain is introduced to construct intelligent and trusted prediction classifications to ensure the behavior of network terminal users can be evaluated and predicted,and finally achieve the security management of user behavior.After application analysis,the results of the Improved Predictive Terminal Behavior Framework with GEP-CPN have resulted in a healthy development of the entire trust system.
作者
罗锦光
苏锦
LUO Jinguang;SU Jin(School of artificial intelligence and Information Engineering,Guangxi Electric al Polytechnic Institute,NanNing 530001,China)
出处
《电声技术》
2022年第2期125-128,共4页
Audio Engineering
基金
广西高校中青年教师科研基础能力提升项目“基于GEP-CPN的可信网络终端行为关键技术研究”(No.2020KY41018)。
关键词
可信网络
终端行为
区块链
神经网络
trusted network
terminal behavior
blockchain
neural network