期刊文献+

融合特征增强及多尺度损失的增量去雾算法 被引量:4

Incremental Dehazing Algorithm Combining Feature Enhancement and Multi-Scale Loss
原文传递
导出
摘要 为提高雾霾图像清晰化效果并实现去雾能力的泛化,提出一种特征增强及多尺度损失约束的网络结构,并采用增量式训练方法对网络进行训练。网络由教师网络和学生网络构成。通过学习教师网络提取的标注样本注意力信息对学生网络提取的特征进行特征增强;将标注样本多尺度语义特征作为软标签,建立多尺度语义特征损失衡量机制,与全局像素差异损失级联,构建面向特征和像素的损失函数;采用增量式训练方法,教师网络为学生网络平衡不同数据集的新旧知识提供先验约束,使网络保留原有知识的前提下,快速提高对增补数据集的泛化能力。实验结果表明,所提算法在主观视觉效果与客观评价指标上均取得了较好的效果。 To improve the clarity of the haze image and realize the generalization of the dehazing ability, a network structure with feature enhancement and multi-scale loss constraint is proposed, which is trained by an incremental training method. The network consists of a teacher network and a student network. The student network enhances the features by learning the attention information of the labeled samples extracted by the teacher network and uses the multi-scale semantic features of the labeled samples as the soft targets. Besides, a multi-scale semantic feature loss measurement mechanism is established, which cascades with the global pixel difference loss to construct the loss function for feature and pixel levels. According to the incremental training method, the teacher network guides the student network to balance the relationship between the new and old knowledge of different datasets. Thus, the network can improve the generalization ability of the supplementary dataset quickly, while retains the original knowledge. Experiment results show that the proposed algorithm performs well in both subjective visual effects and objective evaluation indicators.
作者 王科平 韦金阳 杨艺 费树岷 崔科飞 WANG Keping;WEI Jinyang;YANG Yi;FEI Shumin;CUI Kefei(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454003,China;Zhengmeiji Hydraulic Electric Control Company Limited,Zhengzhou Coal Mining Machinery Group Company Limited,Zhengzhou 450016,China;College of Automation,Southeast University,Nanjing 210096,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2022年第2期57-64,共8页 Journal of Beijing University of Posts and Telecommunications
基金 国家重点研发计划项目(2018YFC0604502) 河南省科技攻关项目(212102210390,192102210100) 河南省煤矿智能开采技术创新中心支撑项目(2021YD01) 贵州省科技计划资助项目(黔科合重大专项字[2018]3003-1)。
关键词 图像去雾 特征增强 多尺度损失约束 增量式训练 image dehazing feature enhancement multi-scale loss constraint incremental training
  • 相关文献

参考文献2

二级参考文献11

  • 1Nayar S K, Narasimhan S G. Vision in bad weather[ C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999 : 820-827.
  • 2Fattal R. Single image dehazing [ J ]. ACM Transactions on Graphics, 2008, 27 (3) : 1-9.
  • 3Tan K, Oakley P J. Physics-based approach to color im- age enhancement in poor visibility conditions [ J ]. Optical Society of America, 2001, 18 (10) : 2460-2467.
  • 4Namer E, Schechner Y Y. Advanced visibility improve- ment based on polarization filtered images[ C ]//Proceed- ings of the Polarization Science and Remote Sensing Ⅱ. San Diego: SPIE, 2005 : 36-45.
  • 5He Kaiming, Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Miami: IEEE, 2009 : 1956-1963.
  • 6Tare1 J P, Hautiere N. Fast visibility restoration from a single color or gray level image [ C ]// Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto : IEEE, 2009 : 2201-2208.
  • 7Hautiere N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology Journal, 2008, 27 ( 2 ) : 87-95.
  • 8马义德,张红娟.PCNN与灰度形态学相结合的图像去噪方法[J].北京邮电大学学报,2008,31(2):108-112. 被引量:20
  • 9方帅,王勇,曹洋,占吉清,饶瑞中.单幅雾天图像复原[J].电子学报,2010,38(10):2279-2284. 被引量:35
  • 10陈龙,郭宝龙,毕娟,朱娟娟.基于联合双边滤波的单幅图像去雾算法[J].北京邮电大学学报,2012,35(4):19-23. 被引量:23

共引文献23

同被引文献23

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部