摘要
In most acute promyelocytic leukemia(APL)cells,promyelocytic leukemia(PML)fuses to retinoic acid receptor α (RARα)due to chromosomal translocation,thus generating PML/RARαoncoprotein,which is a relatively stable oncoprotein for degradation in APL.Elucidating the mechanism regulating the stability of PML/RARαmay help to degrade PML/RARαand eradicate APL cells.Here,we describe a deubiquitinase(DUB)-involved regulatory mechanism for the maintenance of PML/RARαstability and develop a novel pharmacological approach to degrading PML/RARαby inhibiting DUB.We utilized a DUB siRNA library to identify the ovarian tumor protease(OTU)family member deubiquitinase YOD1 as a critical DUB of PML/RARα.Suppression of YOD1 promoted the degradation of PML/RARα,thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice.Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I(G5)as the first YOD1 pharmacological inhibitor.As expected,G5 notably degraded PML/RARαprotein and eradicated APL,particularly drug-resistant APL cells.Importantly,G5 also showed a strong killing effect on primary patient-derived APL blasts.Overall,our study not only reveals the DUB-involved regulatory mechanism on PML/RARαstability and validates YOD1 as a potential therapeutic target for APL,but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL,particularly drug-resistant APL treatment.
基金
This work was supported by grants from the National Natural Science Foundation of China(No.81973354 to Meidan Ying)
China Postdoctoral Science Foundation(No.2020T130593 to Xuejing Shao)
Leading Talent of“Ten Thousand Plan”-National High-Level Talents Special Support Plan and the Fundamental Research Funds for the Central Universities(China).