期刊文献+

Osteopontin targeted theranostic nanoprobes for laser-induced synergistic regression of vulnerable atherosclerotic plaques

原文传递
导出
摘要 Vulnerable atherosclerotic plaque(VASPs)is the major pathological cause of acute cardiovascular event.Early detection and precise intervention of VASP hold great clinical significance,yet remain a major challenge.Photodynamic therapy(PDT)realizes potent ablation efficacy under precise manipulation of laser irradiation.In this study,we constructed theranostic nanoprobes(NPs),which could precisely regress VASPs through a cascade of synergistic events triggered by local irradiation of lasers under the guidance of fluorescence/MR imaging.The NPs were formulated from human serum albumin(HSA)conjugated with a high affinity-peptide targeting osteopontin(OPN)and encapsulated with photosensitizer IR780 and hypoxia-activatable tirapazamine(TPZ).After intravenous injection into atherosclerotic mice,the OPN-targeted NPs demonstrated high specific accumulation in VASPs due to the overexpression of OPN in activated foamy macrophages in the carotid artery.Under the visible guidance of fluorescence and MR dual-model imaging,the precise near-infrared(NIR)laser irradiation generated massive reactive oxygen species(ROS),which resulted in efficient plaque ablation and amplified hypoxia within VASPs.In response to the elevated hypoxia,the initially inactive TPZ was successively boosted to present potent biological suppression of foamy macrophages.After therapeutic administration of the NPs for 2 weeks,the plaque area and the degree of carotid artery stenosis were markedly reduced.Furthermore,the formulated NPs displayed excellent biocompatibility.In conclusion,the developed HSA-based NPs demonstrated appreciable specific identification ability of VASPs and realized precise synergistic regression of atherosclerosis.
出处 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第4期2014-2028,共15页 药学学报(英文版)
基金 This work was supported by the National Nature Science Foundation of China(Nos.81820108019,91939303 and 31971302) the National Key Research and Development Program of China(2018YFC0116305) the Science Foundation of PLA General Hospital(2018XXFC-9,CX19028,China).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部