期刊文献+

基于K-D树加速的大型点云配准算法 被引量:2

Large-scale Point Cloud Registration Algorithm Based on K-D Tree Acceleration
下载PDF
导出
摘要 为了实现大型点云的精确配准,首先对大型点云数据进行降采样及去质心预处理,并采用迭代最近点(Iterative Closest Point,ICP)算法计算点云间的旋转矩阵R与平移矩阵T,最终在Visual Studio中基于OpenGL库实现界面交互和结果显示。结果表明,该配准算法既支持人为选择关键点进行配准,也支持随机生成关键点进行配准,且准确率高。大型点云数据实验表明,针对大型点云点数目多,普通配准算法计算时间长的问题,采用K-D树进行配准算法加速,可保证精度,同时大大缩短了大型点云配准计算时间。 To achieve the precise registration of large point cloud,down-sampling and de-centroid preprocessing of large point cloud data are conducted first,and then the iterative closest point(ICP) algorithm is used to calculate the rotation matrix R and translation matrix T between the point clouds. The interface interaction and result display are finally achieved based on OpenGL library in Visual Studio. The results show that the registration algorithm not only supports manual selection of key points for registration,but also supports random generation of key points, and the registration accuracy is high. It is shown in the experiments that compared with the traditional registration algorithm, K-D tree accelerated registration algorithm not only guarantees the accuracy but also greatly reduces the computational time of registration for large-scale point cloud with many points.
作者 吴振慧 王彩余 WU Zhen-hui;WANG Cai-yu(School of Electronic Engineering,Yangzhou Vocational University,Yangzhou 225009,China;Department of Technology,Yangzhou Guangrun Machinery Co.,Ltd.,Yangzhou 225000,China)
出处 《南通职业大学学报》 2022年第1期70-75,共6页 Journal of Nantong Vocational University
关键词 点云配准 大型点云 迭代最近点 K-D树 point cloud registration large point clouds iterative closest points(ICP) K-D tree
  • 相关文献

参考文献4

二级参考文献27

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2张剑清,翟瑞芳,郑顺义.激光扫描多三维视图的全自动无缝镶嵌[J].武汉大学学报(信息科学版),2007,32(2):100-103. 被引量:24
  • 3戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:197
  • 4Dun WZ,Hun G,Hong LX,et al.The research of optical 3D measuring precision influencing factor in reverse engineering[J].Applied Mechanics an Materials,2010,33:157-162.
  • 5Du SY,Zheng NN,Ying SH,et al.Affine iterative closest point algorithm for point set registration[J].Pattern Recognition Letter,2010,31(9):791-799.
  • 6Hacene A,Mekki A.Bio-CAD reverse engineering of freeform surfaces by planar contours[J].Computer-Aid Design&Applications,2011,8(1):37-42.
  • 7Senin N,Colosimo BM,Pacella M.Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensory coordinate metrology[J].Robotics and Computer-Integrated Manufacturing,2013,29(1):39-52.
  • 8Karen RS,Alexandra SC.Reliability of photogrammetry in the evaluation of postural aspect of individuals with structural scoliosis[J].Journal of Bodywork and Movement Therapies,2011,16(2):210-216.
  • 9PCL点云库官网.点云数据库[EB/OL].[2014-10-06].http://www.pointclouds.org/.
  • 10解则晓,徐尚.三维点云数据拼接中ICP及其改进算法综述[J].中国海洋大学学报(自然科学版),2010,40(1):99-103. 被引量:59

共引文献42

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部