摘要
针对现有技术中计量资产供应链管理滞后的问题,设计了新型数字化计量资产供应链管理方法,构建了包括数据管理层、资产传递层资产分布层和资产应用层的B/S架构系统,在灰度关联分析算法中融入了BP神经模型。采用DBSCAN聚类算法实现电能计量数据的可视化计算,通过算法,能够从诸多计量设备的不同数据类型中随机选定数据对象点,进而分类出不同数据类型的数据,提高了数据管理能力。试验结果表明,方法可靠性高,误差精度低。
Aiming at the problem of lagging in the management of the measurement asset supply chain in the existing technology, a new digital measurement asset supply chain management method was designed, and a B/S architecture system was built, including data management layer, asset delivery layer, asset distribution layer and asset application layer. The DBSCAN clustering algorithm was used to realize the visual calculation of electric energy metering data. Through the algorithm, the data object points can be randomly selected from the different data types of many metering equipment, and then the data of different data types can be classified, which improved the data management ability. The test results show that the method has high reliability and low error accuracy.
作者
李舜
汪金荣
Li Shun;Wang Jinrong(State Grid Zhejiang Marketing Service Center,State Grid Zhejiang Marketing Service Center,Zhejiang Hangzhou 311100,China)
出处
《电气自动化》
2022年第3期64-67,71,共5页
Electrical Automation
关键词
计量资产
供应链管理
B/S架构
DBSCAN聚类算法
数据分类
measurement assets
supply chain management:B/S architecture
DBSCAN clustering algorithm
data classification