期刊文献+

基于GLCM纹理特征提取的黄瓜叶部病害检测算法研究 被引量:6

Research on cucumber leaf disease detection algorithm based on GLCM texture feature extraction
下载PDF
导出
摘要 针对传统的植物叶部病害检测算法复杂的特点,提出了一种基于GLCM纹理特征提取的植物叶部病害检测算法。以黄瓜叶部炭疽病为研究对象,利用K-means聚类算法进行图像阈值分割,并利用灰度共生矩阵提取样本的能量均值、熵均值、对比度均值和相关均值等4种纹理特征参数,通过参数训练,确定无病害区和有病害区参数的区域,进而判定样本的病害情况。结果表明该算法实现效率高、鲁棒性较好。 To the complex algorithm of traditional plant leaf disease detection,this paper proposed a plant leaf disease detection algorithm based on GLCM texture feature extraction. As the research object of cucumber leaf anthracnose,the K-means clustering algorithm was used to perform image threshold segmentation,and the gray level co-occurrence matrix was used to extract the energy mean,entropy mean,contrast mean and correlation mean of the sample. With the parameter training,the area of disease-free area and diseased area parameters were determined,and then the disease condition of the sample was judged. The results showed that the algorithm had high efficiency and good robustness.
作者 李亚文 刘爱军 陈垚 LI Ya-wen;LIU Ai-jun;CHEN Yao(Electronic Information and Electrical Engineering College,Shangluo University/Smart Agricultural Technology and Application Research Center of Shangluo,Shangluo 726000,Shaanxi,China)
出处 《湖北农业科学》 2022年第9期141-145,共5页 Hubei Agricultural Sciences
基金 商洛市科技计划重点项目(19SLKJ121) 商洛学院科研创新团队项目(19SXC03)。
关键词 纹理特征 灰度共生矩阵 聚类算法 图像分割 植物叶部病害 texture feature gray level co-occurrence matrix clustering algorithm image segmentation plant leaf disease
  • 相关文献

参考文献8

二级参考文献124

共引文献375

同被引文献90

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部