期刊文献+

基于GA-KELM的复杂路面病害分割算法

Complex Pavement Disease Segmentation Algorithm Based on GA-KELM
下载PDF
导出
摘要 针对大多数路面裂缝检测算法对坑洼、松散和车辙等复杂病害分割适应较差的问题,提出了一种基于训练样本自动选取与改进的核极限学习机相结合的检测方法。首先使用二维Otsu选取训练样本并提取LBP特征和HOG特征,然后采用遗传算法对核极限学习机中随机给定的输入权值和隐含层偏差进行优化,将降维后得到的特征向量作为特征属性对改进的核极限学习机进行训练,最后用训练好的分类器对路面病害进行检测。经实验证明,该算法与对比实验相比分割精度提高了24.8%,运行时间为4.31 s,是一种鲁棒性较强的检测方法。 Most of the pavement crack detection algorithms have poor segmentation effect on complex diseases such as potholes, looseness and ruts. A detection method based on automatic selection of training samples and improved kernel extreme learning machine is proposed. Firstly, two-dimensional Otsu is used to select training samples and extract LBP features and HOG features. Then, genetic algorithm is used to optimize the input weight and hidden layer threshold given randomly in kernel extreme learning machine. The feature vectors obtained after dimension reduction are used as feature attributes to train the improved kernel extreme learning machine. Finally, the trained classifier is used to detect the pavement diseases. The experimental results show that the segmentation accuracy of the algorithm is improved by 24.8% and the running time is 4.31 s, which is a robust detection method.
作者 李鹏 王青宁 单钰强 LI Peng;WANG Qingning;SHAN Yuqiang(Jiangsu Collaborative Innovation Center qf Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China;Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science and Technology,Nanjing Jiangsu 210044,China;Binjiang College,Nanjing University of Information Science and Technology,Wuxi Jiangsu 214105,China)
出处 《电子器件》 CAS 北大核心 2022年第1期143-147,共5页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(41075115) 江苏省重点研发计划社会发展项目(BE2015692) 江苏省第11批六大高峰人才项目(2014-XXRJ-006)。
关键词 特征提取 主成分分析 核极限学习机 feature extraction principal component analysis kernel extreme learning machine
  • 相关文献

参考文献10

二级参考文献91

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2杨震群,魏骁勇,徐丹,袁国武.掌纹样本采集技术及预处理技术的分析与研究[J].计算机应用,2007,27(2):380-383. 被引量:6
  • 3赵峙江,赵春晖,张志宏.一种新的PCNN模型参数估算方法[J].电子学报,2007,35(5):996-1000. 被引量:21
  • 4王运生,谢丙炎,万方浩,肖启明,戴良英.ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007,15(4):365-372. 被引量:522
  • 5Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002.
  • 6Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03).
  • 7公安部交通管理局.2010年中华人民共和国道路交通事故统计年报[M].北京,2011.
  • 8Sun Ze-hang, Bebis G, Miller R. On-road Vehicle Detection: A Review[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2006,28(5) : 694-711.
  • 9Bertozzi M, Broggi A, Fascioli A. Vision-Based intelligent Vehi- cles: State of the Art and Perspectives[J]. Robotics and Auton- omous Systems, 2000,32 : 1-16.
  • 10Guo D, Fraichard T, Xie M, et al. Color Modeling by Spherical Influence Field in Sensing Driving Environment[C] ff Procee- dings IEEE Intelligent Vehiele Symposium. 2000:249-254.

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部