期刊文献+

一种基于AlexNet迁移学习模型的空间目标ISAR像识别方法 被引量:2

Recognition method of space target ISAR images based on AlexNet transfer learning model
下载PDF
导出
摘要 利用ISAR像进行快速有效的空间目标识别是目前空间态势感知领域研究的热点,然而受到样本数据量的限制,直接训练深度神经网络容易产生过拟合,难以准确预测;而传统基于手动提取ISAR像特征的目标识别方法,操作繁琐且需要耗费大量的时间与精力。针对上述问题,提出一种基于迁移学习快速自主识别空间目标的新方法,该方法通过角度旋转、方位向距离向尺度变换、斑点噪声注入等方式对小样本空间目标ISAR像数据集增强;以AlexNet预训练模型为基础,对模型的“深”、“浅”层分别设置差异化的学习率;通过反向传播方式对AlexNet模型的权值进行微调从而实现模型迁移。训练测试结果表明,数据增强方法可以有效提高模型的分类性能,该方法可以实现小样本数据集下目标的自主快速识别,与传统方法相比具有更好的分类性能。 To solve the problem of fast and autonomous recognition of space targets using Inverse Synthetic Aperture Radar(ISAR)images under the condition of small-scale data sets,a recognition method based on data augmentation(DA)and transfer learning(TL)was proposed.Starting with ISAR imaging of space target,the influence of image projection plane(IPP),azimuth resolution,sampling rate and other factors on ISAR imaging was analyzed,and then DA methods including rotation,scaling in azimuth and cross-range direction,and speckle noise injection was proposed.Then the DA method was used to augment the small-scale ISAR image data set of space targets.Based on the pre-trained AlexNet model,differentiated learning rates were set for the“deep”and“shallow”layers of the model,and the weights of AlexNet model were fine-tuned by backpropagation.On this basis,AlexNet transfer learning model(ATLM)was established.The training and testing results of ATLM under four TL settings on ISAR image datasets of 5 kinds of space targets show that ATLM can realize target recognition autonomously and quickly under the condition of small-scale data sets,and has better classification performance than traditional methods.DA method can effectively improve the classification performance of the ATLM.
作者 许益乔 杨虹 张占月 张刚 XU Yiqiao;YANG Hong;ZHANG Zhanyue;ZHANG Gang(Space Engineering University, Beijing 101416, China;Beijing Institute of Remote Sensing Information, Beijing 100192, China;Beijing Institution of Tracking and Telecommunication Technology, Beijing 100094, China)
出处 《兵器装备工程学报》 CSCD 北大核心 2022年第5期210-219,共10页 Journal of Ordnance Equipment Engineering
基金 军事学研究生资助课题(JY2019C206)。
关键词 空间目标 ISAR像 小样本 迁移学习 数据增强 space target ISAR image small-scale data set transfer learning data augmentation
  • 相关文献

参考文献1

二级参考文献7

共引文献4

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部