摘要
对脑卒中危险因素进行早期监控,降低脑卒中发病率,并对脑卒中预测因素进行有效的整合与识别,是脑卒中防治最重要的工作。可穿戴设备及人工智能算法有望成为脑卒中高危人群风险监测及预测的有效解决方案。该文综述了基于可穿戴设备的脑卒中危险因素监测方法、基于人工智能算法的脑卒中预测模型以及手机应用程序在脑卒中风险预测及识别中的应用,为护士开展脑卒中健康管理工作提供可借鉴的依据,并为改进脑卒中防治策略提供参考。
In terms of stroke prevention and treatment,the most important work are early monitoring of stroke risk factors,efforts to reduce the incidence of stroke in the population,and integration and identification of stroke predictors.Wearable devices and machine learning based on stroke risk factors are expected to become an effective solution for risk monitoring and prediction for people at high risk of stroke.This article reviews the monitoring methods for high-risk factors of stroke based on wearable devices,the application of machine learning and mobile phone applications in stroke risk prediction,which provides references for improving stroke prevention and health management in China in the future.
作者
赵洁
常红
李佩佩
张欣悦
ZHAO Jie;CHANG Hong;LI Peipei;ZHANG Xinyue
出处
《中华护理杂志》
CSCD
北大核心
2022年第9期1141-1146,共6页
Chinese Journal of Nursing
基金
基金资助:北京市属医学科学院所公益发展改革试点项目(京医研2021-8)。
关键词
卒中
可穿戴设备
监测
便携式
危险因素
综述
护理
Stroke
Wearable Devices
Monitoring
Ambulatory
Risk Factors
Review
Nursing Care