期刊文献+

基于粒子群算法的BP神经网络电价预测系统设计 被引量:4

Design of BP Neural Network Electricity Price Forecasting System Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 阐述粒子群算法对于BP神经网络初始权值、阈值进行精准计算,提升电力系统的电价可测性。仿真结果表明,神经网络预测模型系统设计对于电价预测有很好的应用效果。 The particle swarm optimization algorithm is described to accurately calculate the initial weight and threshold of BP neural network, so as to improve the electricity price testability of power system. The simulation results show that the design of neural network forecasting model system has a good application effect for electricity price forecasting.
作者 袁枫 梁羽佳 YUAN Feng;LIANG Yujia(Caofeidian Vocational and Technical College,Hebei 063200,China;China Resources Power Investment Co.,Ltd.North China Branch,Hebei 063200,China)
出处 《集成电路应用》 2022年第4期132-133,共2页 Application of IC
关键词 粒子群算法 预测模型 电价预测 particle swarm optimization forecasting model electricity price forecasting
  • 相关文献

参考文献2

二级参考文献10

共引文献12

同被引文献38

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部