期刊文献+

Laser additive manufacturing of Si/ZrO_(2)tunable crystalline phase 3D nanostructures 被引量:4

下载PDF
导出
摘要 The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.In this work,it was examined a series of organometallic polymer precursors with different silicon(Si)and zirconium(Zr)molar ratios,ranging from 9:1 to 5:5,prepared via sol-gel method.All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano-and micro-feature sized structures.Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared to bulk materials.Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400℃.Under the proper conditions,a wide variety of crystalline phases as well as zircon(ZrSiO_(4)-a highly stable material)can be observed.In addition,the highest new record of achieved resolution below 60 nm has been reached.The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.
出处 《Opto-Electronic Advances》 SCIE EI 2022年第5期22-32,共11页 光电进展(英文)
基金 The US AMRDEC grant No.W911NF-16-2-0069“Enhanced Absorption in Stopped-Light Photonic Nanostructures:Applications to Efficient Sensing” EU LASERLAB-EUROPE(grant agreement No.871124 Horizon 2020 research and innovation programme)projects are acknowleged for the financial support.D.G.acknowledges the financial support from the European Social Fund(project No 09.3.3-LMT-K712-17-0016)under grant agreement with the Research Council of Lithuania(LMTLT).
  • 相关文献

同被引文献31

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部