期刊文献+

3维非定常Navier-Stokes方程组高效全离散有限元方法研究进展

Research Progress in the Highly Efficient Fully Discrete Finite Element Method for Solving the 3D Time-Dependent Navier-Stokes Equations
下载PDF
导出
摘要 针对数值求解3维非定常Navier-Stokes方程组时面临的不可压缩条件、非线性和长时间积分性等困难,讨论了能够克服这些困难的高效全离散有限元方法的研究现状和最新研究成果.此外,也阐述了求解3维非定常Navier-Stokes方程组的有限元空间离散解的稳定性、误差估计和高效全离散有限元解的最优误差估计. Main difficulties of numerically solving the 3D time-dependent Navier-Stokes equations are incompressibility condition,nonlinearity and longtime integration.First,we discuss the research progress and recent achievements in the highly efficient fully discrete finite element method for solving the 3D time-dependent NavierStokes equations.Secondly,we expound the stability and error estimates of the finite element spatial discrete solution and the optimal error estimates of the highly efficient fully discrete finite element method for solving the3D time-dependent Navier-Stokes equations.
作者 何银年 冯新龙 HE Yinnian;FENG Xinlong(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830017,China;School of Mathematics and Statistics,Xi’an Jiaotong University,Shaanxi Xi’an 710049,China)
出处 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第3期257-265,共9页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 国家自然科学基金(11771348,12001466,12071406,U19A2079)。
关键词 NAVIER-STOKES方程组 高效有限元方法 稳定性 最优误差估计 Navier-Stokes equations highly efficient finite element method stability optimal error estimate
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部