期刊文献+

一类具有消失χ曲率的(α,β)-度量

A Class of(α,β)-Metrics with Vanishing χ Curvature
下载PDF
导出
摘要 在芬斯勒几何中,χ曲率是由S曲率定义的一个重要的非黎曼量.研究了一类具有消失χ曲率的(α,β)-度量.首先,给出了一类(α,β)-度量的χ曲率表达式;其次得到了其具有消失χ曲率的刻画方程;最后,构造了一系列具有消失χ曲率的(α,β)-度量. In Finsler geometry,χ curvature is a significant non-Riemannian quantity,which is defined by S curvature.In this paper,we studied a class of(α,β)-metrics with vanishing χ curvature.Firstly,we gave the formula of χ curvature for a class of(α,β)-metrics.Secondly,we obtained its characterized equations with vanishingχ curvature.In the end,we constructed a series of(α,β)-metrics with vanishing χ curvature.
作者 麻翠玲 张晓玲 何勇 MA Cuiling;ZHANG Xiaoling;HE Yong(School of Mathematics and Systems Sciences,Xinjiang University,Urumqi Xinjiang 830017,China;Department of Mathematics,Xinjiang Normal University,Urumqi Xinjiang 830053,China)
出处 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第3期300-305,共6页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 国家自然科学基金(11961061,11461064,11761069) 新疆大学博士启动基金(BS130107).
关键词 Β)-度量 S曲率 χ曲率 多项式(α β)-度量 (α,β)-metrics S curvature χcurvature polynomial(α,β)-metrics
  • 相关文献

参考文献1

二级参考文献9

  • 1Cheng, X., Shen, Z.: Finsler geometry — An approach via Randers spaces, Science Press and Springer, Beijing, 2012.
  • 2Cheng, X., Wang, M.: (a,/3)-metrics with relatively isotropic mean Landsberg curvature. Pulb. Math. Debreceen, 72(3/4), 475-485 (2008).
  • 3Chern, S. S., Shen, Z.: Rieman-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, World Scientific, Singapore, 2005.
  • 4Rund, H.: The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
  • 5Shen, Z.: On some non-Riemannian quantities in Finsler geometry. Canad. Math. Bull., 56, 184-193 (2013).
  • 6Shen, Z.: Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  • 7Shen, Z., Xing, H.: On Randers metrics with isotropic S-curvature. Acta Math. Sin., Engl. Series, 24, 789-796 (2008).
  • 8Tang, D.: On the non-Riemannian quantity H in Finsler geometry. Differ. Geom. Appl., 29, 207-213 (2011).
  • 9Xia, Q.: Some results on the non-Rimannian quantity H of a Finsler metrics. Int. J. Math., 22, 925-936 (2011).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部