摘要
本文研究了大型M-矩阵Sylvester方程(MSE)的数值方法。利用分而治之的思想,将大型矩阵方程分解为低阶矩阵方程和低秩矩阵方程分别求解,利用递归将两部分的解胶合成原问题的解。证明了递归层对应的低阶矩阵方程和低秩矩阵方程都是M-矩阵Sylvester方程。利用MSE的保结构加倍算法分别求解低阶和低秩MSE问题,从而提高了求解原MSE问题的速度。数值实验结果表明,本文提出的分而治之方法对求解大型M-矩阵Sylvester方程是有效的。
In this paper,we consider the numerical methods for large-scale M-matrix Sylvester equation(MSE).Based on the idea of divide-and-conquer method,the large-scale matrix equation is split into low-order matrix equations and low-rank matrix equations,and the solutions of the two parts are recurriely combined into the solutions of the original MSE problem.It is proved that the low-order matrix equations and the low-rank matrix equations corresponding to the recursive layers are M-matrix Sylvester equations.The speed of solving original MSE is accelerated by using the structure-preserving doubling algorithms to solve low-order and low-rank MSEs.Numerical experiments show that the divide-and-conquer method is effective for solving large-scale M-matrix Sylvester equations.
作者
高艺萌
王卫国
Gao Yimeng;Wang Weiguo(School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China)
出处
《中国海洋大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第6期151-156,共6页
Periodical of Ocean University of China
基金
国家自然科学基金项目(11771408)
山东省自然科学基金项目(ZR2017MA027)资助。