期刊文献+

动态广义主成分分析及其在故障子空间建模中的应用 被引量:1

Dynamic generalized principal component analysis with applications to fault subspace modeling
下载PDF
导出
摘要 针对传统故障子空间建模方法未考虑故障数据中同时包含正常工况信息和故障工况信息的实际情况,或未考虑故障数据中的动态因素而导致的对故障子空间提取不够准确的问题,提出了一种动态广义主成分分析方法。通过将带延迟的输入数据进行空间重组,采用广义主成分分析方法提取正常工况和各故障工况之间的动态特征信息,实现对故障子空间的准确建模,并进一步建立故障库实现故障诊断。仿真结果表明,所提方法能够准确提取动态过程的故障子空间,并可用于动态工业过程的故障诊断。 In order to solve the problem of inaccurate modeling of fault subspace,traditional fault subspace modeling method did not consider the fact that fault data contain both normal and fault condition information,or did not consider the dynamic factors in the fault data,these flaws may lead to the case that the fault subspace cannot be extracted accurately,a dynamic generalized principal component analysis(DGPCA)method was proposed.By reorganizing the lagged input data,the dynamic characteristics between normal and fault data were extracted by the proposed DGPCA method,and then the fault subspaces could be modeled for further fault diagnosis.Finally,simulation results confirm the availability of the proposed method for fault subspace modeling and fault diagnosis.
作者 冯晓伟 许剑锋 何川 FENG Xiaofeng;XU Jianfeng;HE Chuan(The Rocket Force University of Engineering,Xi’an 710025,China)
机构地区 火箭军工程大学
出处 《通信学报》 EI CSCD 北大核心 2022年第5期92-101,共10页 Journal on Communications
基金 国家自然科学基金资助项目(No.61903375,No.61773389) 中国博士后科学基金资助项目(No.2019M663635) 陕西省自然科学基金资助项目(No.2020JQ-298) 陕西省青年科技新星基金资助项目(No.2021KJXX-22)。
关键词 动态广义主成分分析 故障子空间 故障重构 故障诊断 dynamic generalized principal component analysis fault subspace fault reconstruction fault diagnosis
  • 相关文献

参考文献2

二级参考文献14

  • 1Qin S. Statistical process monitoring: Basics and be- yond[J]. Journal of Chemometrics, 2003, 17 (8-9) : 480-502.
  • 2Cheng C, Hsu C, Chen M. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes[J]. Industrial & Engineering Chemistry Research, 2010, 49 (5) : 2254-2262.
  • 3Ning C, Chen M, Zhou D. Hidden Markov model based statistics pattern analysis for multimode process monitoring: An index-switching scheme[J]. Industri- al & Engineering Chemistry Research, 2014, 53(27): 11084-11095.
  • 4Zhou D, Li G, Qin S. Total projection to latent structures for process monitoring[J]. AIChE Jour- nal, 2010, 56(1): 168-178.
  • 5Qin S. Survey on data-driven industrial process moni- toring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234.
  • 6Ge Z, Song Z, Gao F. Review of recent research on data-based process monitoring[J]. Industrial & Engi- neering Chemistry Research, 2013, 52 (10): 3543- 3562.
  • 7Yue H, Qin S. Reconstruction-based fault identifica- tion using a combined index[J]. Industrial & Engi- neering Chemistry Research, 2001, 40 (20): 4403-4414.
  • 8Alcala C, Qin S. Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45 (7) : 1593-1600.
  • 9Qin S, Zheng Y. Quality-relevant and process-rele- vant fault monitoring with concurrent projection to la- tent structures[J]. AIChE Journal, 2013, 59 (2) : 496-504.
  • 10Hao H, Zhang K, Ding S, etal. A data-driven mul- tiplicative fault diagnosis approach for automation processes[J]. ISA Transactions, 2014, 53 (5) : 1436- 1445.

共引文献1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部