期刊文献+

基于YOLO-V5的矿车桁架铆接孔定位技术研究 被引量:1

Research on riveting hole positioning technology of tramcar truss based on YOLO-V5
下载PDF
导出
摘要 在矿车车厢自动化生产中,采用机器视觉技术来实现自动铆接工艺。为了对铆接孔进行准确识别与定位,采用深度学习中的YOLO-V5算法对铆接孔进行实时检测,结合最小二乘拟合圆法,在弥补了检测结果缺陷的同时,利用提取的铆接孔边缘坐标,实现了对铆接孔所在位置的准确定位。通过试验,证明了该方法的可行性与鲁棒性。通过对比试验,证明了算法的优越性。 In the automatic production of tramcar carriage, the machine vision technology was used to realize the automatic riveting technology.In order to accurately identify and locate the riveting holes, the YOLO-V5 algorithm in deep learning was used to detect the riveting holes in real time.Through the least square fitting circle method, the defects of the detection results were made up, and the edge coordinates of the riveting holes were extracted, the accurate location of riveting hole was realized.The feasibility and robustness of the method were proved by experiments, and the superiority of the algorithm was proved by comparative experiments.
作者 程亚彬 张宏伟 王新环 郭子路 CHENG Yabin;ZHANG Hongwei;WANG Xinhuan;GUO Zilu(School of Electrical Engineering,Henan Polytechnic University,Jiaozuo 454150,China;Pingdingshan Ansheng Machinery Manufacturing Co.,Ltd.,Pingdingshan 467000,China)
出处 《现代制造工程》 CSCD 北大核心 2022年第5期115-121,共7页 Modern Manufacturing Engineering
关键词 自动铆接 机器视觉 YOLO-V5算法 最小二乘拟合圆法 automatic riveting machine vision YOLO-V5 algorithm least square fitting circle method
  • 相关文献

参考文献13

二级参考文献70

共引文献134

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部