摘要
研究一类带齐次凝聚核的积分-偏微分Smoluchowski方程的相似解及解法.首先用量纲分析法减少方程中必不可少的独立常量的数量;其次,用尺度变换群研究方程的相似不变量及相似解的可行性,构造自相似解和约化的积分-常微分方程;最后,用解的群变换和自相似解构造相似解.
Similarity solutions and analytical solving methods of a class of integro-partial differential Smoluchowski equation with homogeneous coagulation kernels are investigated in this work.Firstly,the numbers of essential independent quantities of the original equations were reduced by use of the dimensional analysis.Secondly,the feasibility of the similarity invariant variables and similarity solutions of the original equations were studied by the method of scaling transformation group analysis,self-similar solutions and reduced integro-ordinary differential equations are constructed by using similarity invariant variables of scaling functions.Finally,similarity solutions of the original equations are constructed by use of the self-similar solutions and group transformation of solutions.
作者
林府标
杨欣霞
张千宏
LIN Fu-biao;YANG Xin-xia;ZHANG Qian-hong(School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guiyang 550025,Guizhou,China)
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2022年第3期18-24,共7页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11761018)
贵州省科技计划基金资助项目(黔科合基础-ZK[2022]一般021)。
关键词
SMOLUCHOWSKI方程
齐次凝聚核
量纲分析
尺度变换群
相似解
Smoluchowski equation
homogeneous coagulation kernel
dimensional analysis
scaling transformation group
similarity solution