期刊文献+

基于ELM的人体跌倒预测算法

Human fall prediction algorithm based ELM
下载PDF
导出
摘要 为了应用于跌倒保护装置设计,需要设计一种跌倒保护预测算法,能够准确并快速的区分跌倒动作和正常行为动作,因此提出了基于ELM的人体跌倒预测算法。该算法通过六轴传感器芯片MPU6050提取人体各个姿态下的三相加速度和三相旋转角,通过多变量分析方法得到特征量,随后对提取的特征量进行预处理,通过滑动时间窗口对数据进行切割,对处理后的数据集进行分类标签化处理,通过标签数据集进行ELM训练测试,得到一种基于ELM的人体跌倒预测算法。通过多指标理论和传统合加速度阈值算法进行了对比评估,确定了基于ELM的人体跌倒预测算法能够在0.2s内快速预测跌倒行为,并且预测准确率能够达到97.6%,完全满足跌倒预测保护装置的应用要求,并且性能明显优于传统跌倒预测算法。 In order to be applied to the design of fall protection devices,it is necessary to design a fall protection prediction algorithm that can accurately and quickly distinguish between fall actions and normal behavior actions.Therefore,an ELM-based human fall prediction algorithm is proposed.The algorithm uses the six-axis sensor chip MPU6050 to extract the three-phase acceleration and three-phase rotation angle of the human body in each posture,and obtains the feature quantity through the multivariate analysis method,and then preprocesses the extracted feature quantity,and cuts the data through a sliding time window,The processed data set is classified and labeled,and the ELM training test is performed on the labeled data set,and an ELM-based human fall prediction algorithm is obtained.Through the comparison and evaluation of the multi-index theory and the traditional combined acceleration threshold algorithm,it is determined that the human fall prediction algorithm based on ELM can quickly predict the fall behavior within 0.2s,and the prediction accuracy can reach 97.6%,which fully meets the requirements of the fall prediction protection device.Application requirements,and performance is significantly better than traditional fall prediction algorithms.
作者 朱文辉 李伟 洪波 Zhu Wenhui;Li Wei;Hong Bo(School of Electrical&Control Engineering,Heilongjiang University of Science&Technology,Harbin Heilongjiang,150022)
出处 《电子测试》 2022年第5期58-60,64,共4页 Electronic Test
关键词 跌倒保护装置 ELM 跌倒预测 分类标签化 多指标理论 Fall protection device ELM Fall prediction Classification and Labeling Multi-index theory
  • 相关文献

参考文献6

二级参考文献47

  • 1王杰秀,安超.我国大城市养老服务的特点和发展策略[J].社会政策研究,2019,0(4):58-82. 被引量:18
  • 2黄艺红,刘海涌.城市老年人服务需求的实证研究[J].北华大学学报(社会科学版),2006,7(2):89-93. 被引量:34
  • 3苏维嘉,王旭辉.新型加速度传感器在倾角测量中的应用研究[J].机械研究与应用,2007,20(5):62-63. 被引量:18
  • 4Li Qiang,Stankovic J A,Hanson M A. Accurate,Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information[A].Berkeley,USA,2009.138-143.
  • 5Bourke A K,Lyons G M. A Threshold-Based Fall-Detection Algorithm Using a Bi-Axial Gyroscope Sensor[J].Medical Engineering and Physics,2008,(01):84-90.
  • 6Noury N,Rumeaua P,Bourke A K. A Proposal for the Classification and Evaluation of Fall Detectors[J].IRBM,2008,(06):340-349.
  • 7Chen Guanchun,Huang C N,Chiang C Y. A Reliable Fall Detection System Based on Wearable Sensor and Signal Magnitude Area for Elderly Residents[A].Seoul,Korea,2010.267-270.
  • 8Tong Lina;Chen Wei;Song Quanjun.A Research on Automatic Human Fall Detection Method Based on Wearable Inertial Force Information Acquisition System[A]广西桂林,2009949-953.
  • 9Quagliarella L,Sasanelli N,Belgiovine G. An Interactive Fall and Loss of Consciousness Detector System[J].Gait & Posture,2008,(04):699-702.
  • 10Shi Guangyi,Chan C S,Li W J. Mobile Human Airbag System for Fall Protection Using MEMS Sensors and Embedded SVM Classifier[J].IEEE Sensors Journal,2009,(05):495-503.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部