期刊文献+

一类集值微分方程解的存在性和稳定性

The existence and stability of solutions for a class of nonlinear delay set-valued differential equations
下载PDF
导出
摘要 讨论了一类时滞集值微分方程解的存在性和稳定性。首先,运用Leray-Schauder不动点定理和Gronwall不等式证明了时滞集值微分方程的解的存在性;然后,在此基础上,证明了平凡解的稳定性。 This paper discussed the existence and stability of solutions of a class of delay set-valued differential equations.Firstly,the Leray-Schauder fixed point theorem and Gronwall inequality are used to prove the existence of the solutions of the delay set-valued differential equations;and then,based on it,the stability of the trivial solutions is proved.
作者 江俊 洪世煌 卢靖琦 JIANG Jun;HONG Shihuang;LU Jingqi(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2022年第3期84-89,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(71771068)。
关键词 时滞集值微分方程 Leray-Schauder不动点 解的存在性 稳定性 delay set-value differential equations Leray-Schauder fixed point existence of solutions stability
  • 相关文献

参考文献2

二级参考文献10

  • 1Lakshmikantham V,Bhasker T G,Devi J V. Theory of Set Differential Equations in Metric Spaces[M]. UK:Cambridge Scientific, 2006.
  • 2Lakshmikantham V, Leela S, Vastala A S. Interconnection between set and fuzzy differential equations [J]. Nonlinear Anal. ,2003,54(2):351-360.
  • 3Bhaskar T G, Lakshmikantham V,Devi V J. Nonlinear variation of parameters formula for set differential equations in a metric space[J]. Nonlinear Anal. ,2005,63(5-7):735-744.
  • 4Marek T M, Mariusz M. Stochastic set differential equations[J]. Nonlinear Anal. , 2010,72 (3-4): 1247- 1256.
  • 5Marek T M. Second type Hukuhara differentiable solutions to the delay set-valued differential equations [J]. Appl. Math. Comp. ,2012,218(18) :9427-9437.
  • 6Bashir A,Sivasundaram S. The monotone iterative technique for impulsive hybrid set valued integro-differential equations[J]. Nonlinear Anal. , 2006,65 (12) : 2260-2276.
  • 7LI Lei, HONG Shihuang. Exponential stability for set dynamic equations on time scales[J]. Comp. Appl. Math. , 2011,235 (17) : 4916-4924.
  • 8HONG Shihuang. Stability criteria for set dynamic equations on time scales[J]. Computers and Mathematics with Applications, 2010,59 (11):3444-3457.
  • 9Phu N D, Quang L T,Tung T T. Stability criteria for set control differential equations[J]. Nonlinear Anal. ,2008,69(11) :3715-3721.
  • 10Devi j V, Naidu C A. Stability results for set differential equations involving causal operators with memory[J]. Eur. J. Pure Appl. Math. ,2012,5(2):187-196.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部