摘要
城市交通流量预测对交通管理和公共安全具有重要意义。然而,交通栅格流量数据中的规律在时刻变化,在城市中存在全局范围的时空间关系,并且不同特征通道在每个城市区域上有不同的重要性。为解决这些挑战并做出更准确的预测,设计了一种新颖的时空神经网络模型--3D通道注意力网络(three-dimensional channel-wise attention networks,3D-CANet)。提出一个3D通道内注意力(three-dimensional inner channel attention,3D-InnerCA)单元来动态捕获各个通道中不同的全局时空相关性,同时设计通道间注意力(inter channel attention,InterCA)单元来自适应地重校准每个区域上不同特征通道的贡献。在3个真实交通栅格流量数据集上的实验结果表明,3D-CANet模型的预测能力优于其他对比方法,证明了模型的有效性。
Urban traffic flow forecasting is of great significance for traffic management and public safety.However,the correlations of traffic raster flow change with time.There are global spatio-temporal correlations in the city,and the contributions of channel-wise features vary on each city region.To tackle these challenges and make more accurate prediction,a novel spatio-temporal neural network model,named 3D-CANet(three-dimensional channel-wise attention network),was designed.A 3D-InnerCA(three-dimensional inner-channel attention)unit was proposed to dynamically capture the global spatio-temporal correlations for different channel-wise features.Meanwhile,an InterCA(inter-channel attention)unit was designed to adaptively recalibrate the contributions of different channel-wise features on each region.The experimental results on three real-world traffic raster flow datasets demonstrate that the predictive performance of the 3D-CANet model was better than the others,which proved the validity of the model proposed.
作者
童凯南
林友芳
刘军
郭晟楠
万怀宇
TONG Kainan;LIN Youfang;LIU Jun;GUO Shengnan;WAN Huaiyu(School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;TravelSky Technology Limited, Beijing 101318, China)
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
2022年第3期41-49,共9页
Journal of National University of Defense Technology
基金
中国博士后科学基金资助项目(2021M700365)。
关键词
时空数据
交通栅格流量
3D通道注意力
通道内注意力
通道间注意力
spatio-temporal data
traffic raster flow
3D channel-wise attention
inner channel attention
inter channel attention