摘要
已有大量研究揭示了近似数量系统与计算流畅性的相关关系,但缺少对二者关系原因的系统检验与论证。视觉形状知觉假设有别于传统的数量领域特异性解释,认为对形状的快速知觉是近似数量系统与计算流畅性的共同认知机制,即视觉形状的快速知觉能力可以解释二者之间的相关关系。近似数量系统和计算流畅性在加工过程中依赖对形状的快速知觉,二者在加工过程中都涉及了复杂视觉刺激的快速处理。视觉形状知觉假设得到了一系列研究结果的支持,但局限在视觉形状知觉与二者关系的探讨上,视觉形状知觉在二者关系中作用的加工机制仍不清楚。未来研究需要结合多种研究方法和技术,多角度深入探讨视觉形状知觉在二者关系中作用的认知与脑机制,并将研究结果应用于数学课堂教学和计算困难的干预中。
A large number of studies have revealed the correlation between the approximate number system and arithmetical fluency, but systematic tests and arguments for the causes of the relationship are lacking. The hypothesis of visual form perception differs from the traditional domain-specific explanation of number, and it is believed that the fast perception of forms is a common cognitive mechanism of the approximate number system and arithmetical fluency, that is, the fast perceptual ability of visual forms can explain the correlation between the two. Both the approximate number system and arithmetical fluency rely on the fast perception of forms and involve fast processing of complex visual stimuli during processing. The hypothesis of visual form perception is supported by the results of a series of studies but is limited to the exploration of the relationship between visual form perception and the approximate number system and arithmetical fluency, where the processing mechanisms underlying the role of visual form perception in the relationship between the two remain unclear. Therefore, future research needs to combine multiple research methods and techniques to comprehensively explore from multiple perspectives the cognitive and brain mechanisms underlying the role of visual form perception in the relationship between the two and to apply the findings to mathematics classroom teaching and interventions for dyscalculia.
作者
张译允
马媛媛
赵锦
周新林
邵园颖
ZHANG Yiyun;MA Yuanyuan;ZHAO Jin;ZHOU Xinlin;SHAO Yuanying(School of Psychology,Liaoning Normal University,Dalian 116029,China;Dalian University of Science and Technology,Dalian 116036,China;State Key Laboratory of Cognitive Neuroscience and Learning&IDG/McGovern Institute for Brain Research,Beijing Normal University,Beijing 100875,China;Advanced Innovation Center for Future Education,Beijing Normal University,Beijing 100875,China;Siegler Center for Innovative Learning,Beijing Normal University,Beijing 100875,China)
出处
《心理科学进展》
CSSCI
CSCD
北大核心
2022年第6期1242-1252,共11页
Advances in Psychological Science
基金
国家自然科学基金-青年科学基金项目资助(31700971)。
关键词
近似数量系统
视觉形状知觉
计算流畅性
approximate number system
visual form perception
arithmetical fluency