期刊文献+

铝基复合材料制氢性能与安全性研究

Study on the Performance and Safety of Aluminum Matrix Composite for Hydrogen Production
下载PDF
导出
摘要 铝水解制氢技术具有储氢密度高、安全、产物环境友好等优势,成为最具竞争力的制氢技术之一,能满足特种场景下燃料电池的供氢需求。本文中通过高能球磨工艺制备了铝基复合材料85%Al-9%LiAlH4-3%Bi-3%NaCl,研究其在不同场景下的制氢性能和特种环境下的安全性,并通过设计、制造铝水反应制氢装置实现了氢气流量的稳定供应。结果表明,在50℃温度下,铝基复合材料最大产氢量可达1 435 mL/g,火烧实验中能保持良好的阻燃效果,所设计的铝水反应制氢装置可实现氢气0.8 L/min流量的稳定供应,可满足低功率燃料电池的使用要求。 The technology of aluminum water electrolysis for hydrogen production has the advantages of high hydrogen storage density,safe and environmentally friendly,becoming one of the hydrogen production technologies with high compatibility and being able to meet the needs of hydrogen supply of fuel cell in special scenes. It is described in this paper that the aluminum matrix composite of 85%Al-9%LiAlH4-3%Bi-3%NaCl is produced with high-energy ball milling process,the hydrogen production performance in different scenes and its safety under special environment are studied,and the stable supply of hydrogen flow is achieved through the design and production of the device of aluminum-water reaction for producing hydrogen. The results show that at a temperature of 50oC,the maximum hydrogen output of aluminum matrix composite,which has a good fire resistance property shown by burning experiment,reaches 1,435 mL/g,and the device designed for aluminum-water reaction can fulfill a stable hydrogen supply with a flow rate of 0.8 L/min,meeting the operation demand of low-power fuel cell.
作者 赵阳 叶康 孙汉乔 胡尊严 徐梁飞 李建秋 欧阳明高 Zhao Yang;Ye Kang;Sun Hanqiao;Hu Zunyan;Xu Liangfei;Li Jianqiu;Ouyang Minggao(School of Vehicle and Mobility,Tsinghua University,Beijing 100084)
出处 《汽车工程》 EI CSCD 北大核心 2022年第5期730-735,共6页 Automotive Engineering
基金 山东省重大科技创新工程项目(2021WHZZB0102)资助。
关键词 质子交换膜燃料电池 铝水反应制氢 储氢密度 安全性 PEMFC aluminum-water reaction for hydrogen production hydrogen storage density safety
  • 相关文献

参考文献2

二级参考文献20

  • 1BAUEN A. Future energy sources and systems- Acting on climate change and energy security [J].J Power Sources,2006,157 (2): 893 - 901.
  • 2GRAETZ J. New approaches to hydrogen storage[J]. Chem Soc Rev, 2009, 38(1):73-82.
  • 3MURUGESAN S, SUBRAMANIAN V. Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale[J]. J Power Sources, 2009, 187(1): 216-223.
  • 4HIRAKI T, YAMAUCHI S, IIDA M, et al. Process for recycling waste aluminum with generation of high-pressure hydrogen[J]. Envi- ronmental Science & Technology, 2007, 41(12): 4454-4457.
  • 5MARTINEZ S S, SANCHEZ L A, GALLEGOS A A A, et al. Cou- pling a PEM fuel cell and the hydrogen generation from aluminum waste cans[J]. Int J Hydrogen Energy, 2007, 32(15): 3159-3162.
  • 6SOLER L, CANDELA A M, MACANAS J, et al. Hydrogen genera- tion by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide[J]. Int J Hydrogen Energy, 2009, 34(20): 8511- 8518.
  • 7SOLER L, CANDELA A M, MACANAS J, et al. In situ generation of hydrogen from water by aluminum corrosion in solutions of sodi- um aluminate[J]. J Power Sources, 2009, 192(1): 21-26.
  • 8SOLER L, CANDELA A M, MACANAS J, et al. Hydrogen genera- tion from water and aluminum promoted by sodium stannate[J]. Int J Hydrogen Energy, 2010, 35(3): 1038-1048.
  • 9DAI H B, MA G L, XIA H J, et al.Reaction of aluminium with alka- line sodium stannate solution as a controlled source of hydrogen[J]. Energ Environ Sci, 2011,4: 2206-2212.
  • 10FAN M Q,SUN L X,XU F,Hydrogen production for micro-fuel-cell from activated A1- Sn-Zn-X (X: hydride or halide) mixture in water [J]. Renewable Energy, 2011, 36(2): 519-524.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部