摘要
利用广义模糊微分,讨论了基于结构元的模糊值Caputo分数阶微分的性质,研究了模糊值Caputo分数阶微分和模糊值Riemann-Liouville分数阶积分之间的关系,最后讨论了常系数一阶线性模糊值Caputo分数阶微分方程解的结构。
This paper,based on the structure element,discusses the definition and characteristics of the generalized Caputo fractional differential of fuzzy valued functions,and then studies the relationship between fuzzy valued Caputo fractional differential and fuzzy valued Riemann-Liouville fractional integral.Finally,the structure of solutions of first-order linear fuzzy valued Caputo fractional differential equations with constant coefficients was discussed.
作者
亢琳
郭元伟
KANG Lin;GUO Yuan-wei(Department of Science and Humanities, Jiangsu Normal University, Xuzhou 221116,China;Department of Mathematics, Taiyuan Institute, Taiyuan 030032,China)
出处
《湖北师范大学学报(自然科学版)》
2022年第2期8-14,共7页
Journal of Hubei Normal University:Natural Science
关键词
广义Hukuhara微分
结构元
模糊值Caputo分数阶微分
分数阶模糊微分方程
generalized Hukuhara differential
fuzzy structure element
fuzzy Caputo fractional differential equations
fuzzy fractional differential equations