期刊文献+

一类广义Petersen图的2-距离染色

The 2-distance Coloring of a Class of Generalized Petersen Graphs
下载PDF
导出
摘要 图G(V,E)的2-距离染色是指正常的顶点染色,且满足距离不大于2的任意两个顶点染不同的颜色.研究了一类广义Petersen图P(n,2)的2-距离染色,并确定了P(n,2)的2-距离色数. The 2-distance coloring of a graph G(V,E)means a proper vertex coloring and any two vertices with a distance less than or equal to 2 are assigned different colors.In this paper,the 2-distance coloring of a class of generalized Petersen graphs P(n,2)is studied and the 2-distance chromatic number of P(n,2)is determined.
作者 陈海钰 CHEN Hai-yu(Lanzhou Vocational Technical College,Lanzhou 730070,China)
出处 《兰州文理学院学报(自然科学版)》 2022年第3期8-11,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 兰州职业技术学院重点项目(2020XY-19)。
关键词 广义PETERSEN图 2-距离染色 2-距离色数 generalized Petersen graphs 2-distance coloring 2-distance chromatic number
  • 相关文献

参考文献3

二级参考文献13

  • 1[1]Gary Chartrand,Linda Lesniak Foster.Graphs and Digraphs[M].Monterey:Wadsworth Books/Cole,1986.1-150.
  • 2[2]Roy Nelson,Robin J Wilson.Graph Colorings[M].London:Pitman Research Notes in Mathematic Series,1990.218.
  • 3[3]Harary F.Conditional colorability in graphs[A].Graphs and Applications.Proc.First Colorado Symp.Graph Theory[C].New York:John Wiley & Sons Inc,1985.1-200.
  • 4ALON N,MOHAR B.The chromatic number of graph powers[J].Combinatorics,Probability and Computing,2002,11:1-10.
  • 5MOLLOY M,SALAVATIPOUR M R.A bound on the chromatic number of the square of a planar graph[J].Journal of Combinatorial Theory(Series B),2005,94:189-213.
  • 6LIH Ko-wei,WANG Wei-fan.Coloring the square of an outerplanar graph[J].Taiwan Residents Journal of Mathematics,2006,10(4):1015-1023.
  • 7FERTIN G,GODARD E,RASPAVD A.Acyclic and k-distance coloring of the grid[J].Information Processing Letters,2003,87:51-58.
  • 8FERTIN G,RASPAUD A,REED B.Star coloring of gaph[J].Journal of Graph Theory,2004,47:163-182.
  • 9KIM D S,DU Ding-zhu,PARDALOS P M.A coloring problem on the n-cube[J].Discrete Applied Mathematics,2000,103:307-300.
  • 10JACKO P,JENDROL S.Distance coloring of the hexagonal lattice[J].Discussiones Mathematicae Graph Theory,2005,25:1-16.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部