期刊文献+

基于VMD与自适应MOMEDA的回转支承故障诊断 被引量:1

Fault Diagnosis of Slewing Bearing Based on VMD and Adaptive MOMEDA
下载PDF
导出
摘要 针对强背景噪声下的低速重载回转支承难以提取故障特征的问题,提出了一种变分模态分解(VMD)与多点最优最小熵解卷积(MOMEDA)相结合的回转支承故障诊断方法。首先,采用VMD算法对原始振动信号进行分解,从中选出峭度最优分量;其次,利用灰狼优化算法(GWO)优化MOMEDA算法中的参数T,再基于优化的MOMEDA算法增强最优分量中的故障冲击成分;最后,对处理后的最优分量进行包络谱分析,提取故障特征。与VMD-MED方法相比,所提方法能够更准确突出信号中的周期性故障冲击成分,有效提取低速重载回转支承故障特征。 Aiming at the problem that it is difficult to extract the fault characteristics of the low-speed and heavy-load slewing bearing under strong background noise,a slewing bearing fault diagnosis method based on the combination of variational mode decomposition and multipoint optimal minimum entropy deconvolution adjusted is proposed.Firstly,the VMD algorithm is used to decompose the original vibration signal,and the optimal component of kurtosis is selected from it.Secondly,the parameter T in the MOMEDA algorithm is optimized by the grey wolf optimization algorithm,and then the fault impact component of the optimal component is enhanced based on the optimized MOMEDA algorithm.Finally,envelope spectrum analysis is performed on the processed optimal component to extract fault characteristics.Compared with the VMD-MED method,the proposed method can more accurately highlight the periodic fault impact components in the signals,and effectively extract the fault features of low-speed and heavy-load slewing bearings.
作者 郑强 林云树 吴晓梅 张冲 ZHENG Qiang;LIN Yun-shu;WU Xiao-mei;ZHANG Chong(Fujian Special Equipment Inspection and Research Institute,Fuzhou 350008,China;School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350108,China)
出处 《组合机床与自动化加工技术》 北大核心 2022年第5期79-82,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 市场监管总局科技计划项目(2019MK036) 福建省自然科学基金项目(2019J01211)。
关键词 变分模态分解 灰狼优化算法 多点最优最小熵解卷积 回转支承 故障诊断 variational mode decomposition grey wolf optimization multipoint optimal minimum entropy deconvolution adjusted slewing bearing fault diagnosis
  • 相关文献

参考文献3

二级参考文献22

共引文献15

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部