期刊文献+

Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2 被引量:5

下载PDF
导出
摘要 Novel graphene-supported FeOOH nanodots(FeOOH NDs@G)were successfully prepared by a facile hydrothermal method and doped into MgH_(2)through mechanical ball-milling.MgH_(2)with 10wt%FeOOH NDs@G began to release hydrogen at 229.8℃,which is106.8℃ lower than that of pure MgH_(2).The MgH_(2)-10wt%FeOOH NDs@G composite could reversibly absorb 6.0wt%hydrogen at 200℃ under a 3.2 MPa hydrogen pressure within 60 min.With the addition of FeOOH NDs@G,the dehydrogenation and hydrogenation activation energy of MgH_(2)was decreased to 125.03 and 58.20 kJ·mol^(-1)(156.05 and 82.80 kJ·mol^(-1)for pure MgH_(2)),respectively.Furthermore,the hydrogen capacity of the FeOOH NDs@G composite retained 98.5%of the initial capacity after 20 cycles,showing good cyclic stability.The catalytic action of FeOOH NDs@G towards MgH_(2)could be attributed to the synergistic effect between graphene nanosheets and in-situ formed Fe,which prevented the aggregation of Mg/MgH2 particles and accelerated the hydrogen diffusion during cycling,thus enabling the Mg H_(2)-10wt%FeOOH NDs@G composite to exhibit excellent hydrogen storage performance.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1464-1473,共10页 矿物冶金与材料学报(英文版)
  • 相关文献

参考文献16

二级参考文献169

  • 1Fenghua Wang,Miaolin Feng,Yanyao Jiang,Jie Dong,Zhenyan Zhang.Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy[J].Journal of Materials Science & Technology,2020(4):74-81. 被引量:4
  • 2ZHANG Yanghuan ,YANG Tai ,CAI Ying ,HOU Zhonghui ,REN Huiping ,ZHAO Dongliang .Electrochemical hydrogen storage characteristics of La_(0.75-x) M_xMg_(0.25)Ni_(3.2)Co_(0.2)Al_(0.1)(M=Zr,Pr;x=0,0.1) alloys prepared by melt spinning[J].Rare Metals,2012,31(5). 被引量:7
  • 3Lipman T E, Edwards J L, Kammen D M. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems [J]. Energy Policy, 2004, 32:101 - 125.
  • 4Patil A S, Dubois T G, Sifer N, et al. Portable fuel cell systems for America's army: technology transition to the field [J]. Journal of Power Sources, 2004, 136:220 - 225.
  • 5Chu D, Jiang R, Gardner K, et al. PEM fuel cells for communication applications [J]. Journal of Power Sources, 2001, 96: 174- 178.
  • 6Agbossou K, Chahine R, Hamelin J, et al. Hydrogen energy systems for remote applications [J]. Journal of Power Sources, 2001, 96: 168 - 173.
  • 7Oliver J M, Alan C, Eric C. Low-cost light weight high power density PEM fuel cell stack [J]. Electrochimica Acta, 1998, 43:3829 - 3833.
  • 8Aiello R, Matthews M A, Reger D L, et al. Production of hydrogen from novel chemical hydrides [J]. International Journal of Hydrogen Energy, 1998, 23:1103 - 1108.
  • 9Stearns J E, Matthews M A, Reger D L, et al. The thermal characterization of novel complex hydrides [J]. International Journal of Hydrogen Energy, 1998,23: 469-474.
  • 10Aiello R, Sharp J H, Matthews M A. Production of hydrogen from chemical hydrides via hydrolysis with steam [J]. International Journal of Hydrogen Energy,1999, 24: 1123- 1127.

共引文献90

同被引文献45

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部