期刊文献+

一种自适应的脑电信号噪声检测与去除方法

An Adaptive Method for Detecting and Removing EEG Noise
下载PDF
导出
摘要 针对麻醉深度监测中脑电信号噪声的实时检测与去除的问题,提出了一种自适应的脑电信号噪声检测与去除方法。利用离散小波变换提取一段脑电信号的低频能量与高频能量,并针对信号的低频波段与高频波段,设置两组阈值,阈值能依据最近一段脑电信号的能量情况自适应地进行更新。最后根据低频能量与高频能量所在的范围,从而判断信号受干扰的等级与情况,并进行相应的去噪处理。结果表明,该方法能够较为准确地检测与去除脑电信号中的噪声干扰,并提高了计算的特征参数的稳定性。 To solve the problem of real-time detection and removal of EEG signal noise in anesthesia depth monitoring, we proposed an adaptive EEG signal noise detection and removal method. This method uses discrete wavelet transform to extract the low-frequency energy and high-frequency energy of a segment of EEG signals, and sets two sets of thresholds for the low-frequency band and high-frequency band of the EEG signal. These two sets of thresholds can be updated adaptively according to the energy situation of the most recent EEG signal. Finally, we judge the level of signal interference according to the range of low-frequency energy and high-frequency energy, and perform corresponding denoising processing. The results show that the method can more accurately detect and remove the noise interference in the EEG signal, and improve the stability of the calculated characteristic parameters.
作者 袁思念 李若薇 朱子孚 马胜才 牛航舵 叶继伦 张旭 YUAN Sinian;LI Ruowei;ZHU Zifu;MA Shengcai;NIU Hangduo;YE Jilun;ZHANG Xu(Health Science Center,Biomedical Engineering,Shenzhen University,Shenzhen,518060;Shenzhen Key Lab for Biomedical Engineering,Shenzhen,518060;Guangdong Key Lab for Biomedical Measurements and Ultrasound Imaging,Shenzhen,518060)
出处 《中国医疗器械杂志》 2022年第3期248-253,共6页 Chinese Journal of Medical Instrumentation
基金 深圳市科创委重点项目(20190215140144982)。
关键词 脑电信号 麻醉深度 离散小波变换 去噪 EEG depth of anesthesia discrete wavelet transform denoising
  • 相关文献

参考文献4

二级参考文献37

  • 1张仁龙,马文丽,姚文娟,郑文岭,梁斌.基于小波包变换对脑电信号的分析和处理[J].电子测量技术,2007,30(3):22-24. 被引量:3
  • 2李治,汪曣,刘凤军,周鹏,王明时.入睡脑电信号的去噪[J].中国组织工程研究与临床康复,2007,11(13):2531-2533. 被引量:8
  • 3王璐,王沁,庞皓.股票收益率尾部相关性的Copula度量及模拟[J].数学的实践与认识,2007,37(10):57-61. 被引量:13
  • 4DONOBO D L. De-noising by soft-thresholding[J]. IEEE Trans Inform Theory, 1995,41(3) ,613-627.
  • 5DONOBO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995,90(432) : 1200-1224.
  • 6POORNACHANDRA S. Wavelet-based denoising using subband dependent threshold for ECG signals[J]. Digital Signal Processing, 2008,18:49-55.
  • 7王敏,张晓,张春峰,张丽君.自由活动动物的脑电信号分析与识别[J].山东科技大学学报(自然科学版),2007,26(3):44-47. 被引量:6
  • 8DONOHO D L.De-noising by soft-thresholding [J].IEEE Trans Inform Theory,1995,41(3):612-627.
  • 9Zou L,Zhang Y,Yang L T,et al. SingleTrial Evoked PotentialsStudy by Combining Wavelet Denoising and Principal ComponentAnalysis Methods[J]. Journal of Clinical Neurophysiology,2010,27(1):17-24.
  • 10Albera L,Kachenoura A,Comon P,et al. ICABased EEG Denoising:aComparative Analysis of Fifteen Methods[J]. Bulletin of the Polish Academy of Sciences:Technical Sciences,2012,60(3):407-418.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部