摘要
车辆的稳定性一直以来是车辆安全研究的重要问题,车辆在紧急变道或者避障等极端工况下非常容易失去稳定性。首先,根据车轮刷子理论,建立匹配机械弹性车轮(Mechanical elastic wheel,MEW)的纵向和侧偏力学模型。接着,为了深入研究装备MEW的分布式驱动电动汽车的横向稳定性,提出一种分层控制结构。为了提高滑模控制器的鲁棒性,上层控制器采用积分联合终端的滑模控制器,通过获得期望的横摆力矩来提高车辆的横向稳定性。在下层控制器中根据采用全轮纵向力轴载比例分配模式,以前、后轴载估计值为比例分配各轴总的驱动力与横摆力矩。建立匹配MEW的车辆动力学模型,通过Carsim和Matlab/Simulink联合仿真对分层控制结构进行了多种复杂工况下的验证。仿真结果表明,提出的控制算法能够有效地提升装备MEW车辆的横向稳定性。
The stability of the vehicle has always been an important issue in vehicle safety research.Vehicle instability usually occurs under extreme conditions such as emergency lane change or obstacle avoidance.Firstly,according to the wheel brush model,a mechanical model of longitudinal and lateral of the mechanical elastic wheel(MEW) is established.Then,in order to ensure the lateral stability of the distributed drive electric vehicle(DDEV) equipped with MEW,an integrated framework is proposed.In order to improve the robustness of the sliding mode controller,a sliding mode controller combines integral and terminal terms is designed at the upper-level controller.The sliding mode controller can improve the lateral stability of the vehicle by obtaining the desired yaw moment.At the lower-level controller,the longitudinal force axial load proportional distribution strategy is used to distribute the torque and the yaw moment.Vehicle dynamic model with MEW brush model is established.The controller framework is verified by Carsim and Matlab/Simulink under emergency simulation conditions.The simulation results show that the controller framework can improve the lateral stability of DDEV with MEW effectively.
作者
林棻
蔡亦璋
赵又群
臧利国
王少博
LIN Fen;CAI Yizhang;ZHAOYouqun;ZANG Liguo;WANG Shaobo(College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016;School of Automobile and Rail Transportation,Nanjing Institute of Technology,Nanjing 211167)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第8期236-243,共8页
Journal of Mechanical Engineering
基金
中央高校基本科研业务费专项资金资助项目(NS2020016)。
关键词
机械弹性车轮
分布式驱动电动汽车
滑模控制
横向稳定性
力矩分配
mechanical elastic wheel
distributed drive electric vehicle
sliding mode control
lateral stability
torque distribution