摘要
利用修改的连分式向后递推公式 ,得到了连分式任意二项渐近式之差的一个递推算法 ;利用此递推算法获得了一个连分式收敛判断准则 ,同时给出了这一类连分式的收敛误差界为O(dn) ,d <1.用数值实例说明了新收敛判断准则与已存在收敛判断准则之间的差别 ;利用所得递推算法给出了Worpitzky型连分式更加精确的收敛误差界 .
A new recurrence algorithm for the difference of any two convergents of continued fractions by means of the modified backward recurrence formula is presented. Then, a new convergence criteria for continued fractions is obtained and truncation error bound O(dn) (d<1), is given. Some numerical examples are given to explain the difference between new convergence theorem and the existing convergence theorem. Finally, using this algorithm, a more refined truncation error bound is given for the continued fractions of Worpitzky′s type.
出处
《中南工业大学学报》
CSCD
北大核心
2002年第5期547-549,共3页
Journal of Central South University of Technology(Natural Science)