期刊文献+

连分式渐近式的一个递推算法及其应用 被引量:2

A recurrence algorithm for the convergents of continued fractions and its applications
下载PDF
导出
摘要 利用修改的连分式向后递推公式 ,得到了连分式任意二项渐近式之差的一个递推算法 ;利用此递推算法获得了一个连分式收敛判断准则 ,同时给出了这一类连分式的收敛误差界为O(dn) ,d <1.用数值实例说明了新收敛判断准则与已存在收敛判断准则之间的差别 ;利用所得递推算法给出了Worpitzky型连分式更加精确的收敛误差界 . A new recurrence algorithm for the difference of any two convergents of continued fractions by means of the modified backward recurrence formula is presented. Then, a new convergence criteria for continued fractions is obtained and truncation error bound O(dn) (d<1), is given. Some numerical examples are given to explain the difference between new convergence theorem and the existing convergence theorem. Finally, using this algorithm, a more refined truncation error bound is given for the continued fractions of Worpitzky′s type.
作者 肖萍
出处 《中南工业大学学报》 CSCD 北大核心 2002年第5期547-549,共3页 Journal of Central South University of Technology(Natural Science)
关键词 渐近式 递推算法 向后递推公式 收敛判断准则 截断误差 收敛误差界 连分式 continued fractions backward recurrence algorithm convergence criteria truncation error
  • 相关文献

参考文献6

  • 1[1]Lorentzen L, Waadeland H. Continued fractions with applications[M]. Amsterdam: Elsevier Science, 1992: 93-184.
  • 2[2]Marafino J, Mcdevitt T J. Convergence of complex continued fractions[J]. Math Magazine, 1995, 68(2): 202-208.
  • 3[3]Schelling A. Convergence theorems for continued fractions in Banach space[J]. Journal of Approximation Theory, 1996, 86(1): 72-80.
  • 4[4]Kuchmins′ka K. On sufficient conditions for convergence of two-dimensional continued fractions[J]. Acta Appl Math, 2000, 61(2): 175-183.
  • 5[5]Beardon B F. Worpitzky′s theorem on continued fractions[J]. Journal of Comput Appl Math, 2001, 131(1): 143-148.
  • 6[6]Cuyt A, Wuytack L. Nonlinear methods in numerical analysis[M]. Amsterdam: Elsevier Science, 1986: 31.

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部