期刊文献+

基于SAA-SSA-BPNN的网络安全态势评估模型 被引量:10

Network Security Situation Assessment Model Based on SAA-SSA-BPNN
下载PDF
导出
摘要 针对目前网络安全态势评估模型准确性和收敛性有待提高的问题,提出一种基于SAA-SSA-BPNN的网络安全态势评估模型。该模型利用模拟退火算法(SAA)可以一定概率接受劣解并有大概率跳出局部极值达到全局最优解的特性来优化麻雀搜索算法,利用优化后的麻雀搜索算法(SSA)具有良好稳定性和收敛速度快且不易陷入局部最优的特点对BP神经网络(BPNN)进行改进,找到最佳适应度个体并获取最优权值和阈值,将其作为初始值赋给BP神经网络,将预处理后的指标数据输入改进后的BP神经网络模型对其进行训练,利用训练好的模型对网络系统所遭受威胁的程度进行评估。对比实验结果表明,该评估模型比其他基于改进BP神经网络的态势评估模型准确性更高,收敛速度更快。 To solve the problems that the accuracy and convergence of current network security situation assessment models need to be improved,a network security situation assessment model based on SAA-SSA-BPNN is proposed.In this model,the sparrow search algorithm(SSA)is optimized by the simulated annealing algorithm(SAA)that can accept the inferior solution with a certain probability and jump out of the local extreme value with a high probability to reach the global optimal solution,and the BP neural network(BPNN)is improved by the optimized sparrow search algorithm that has good stability,fast convergence speed and is not easy to fall into the local optimum,so as to find the best fitness individual,and obtain the optimal weight and threshold,then assign them to the BP neural network as the initial values.The preprocessed index data is input into the improved BP neural network model for training,and finally the threat degree of the network system is assessed based on the trained model.Comparative experimental results show that this assessment model has higher accuracy and faster convergence than other situation assessment models based on improved BP neural network.
作者 张然 潘芷涵 尹毅峰 蔡增玉 ZHANG Ran;PAN Zhihan;YIN Yifeng;CAI Zengyu(College of Computer and Communication Engineering,Zhengzhou University of Light Industry,Zhengzhou 450000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第11期117-124,共8页 Computer Engineering and Applications
基金 河南省高等学校重点科研项目(21B520021) 河南省自然科学基金面上项目(202300410508)。
关键词 网络安全 态势评估 BP神经网络 模拟退火算法 麻雀搜索算法 network security situation assessment back propagation(BP)neural network simulated annealing algo-rithm sparrow search algorithm
  • 相关文献

参考文献6

二级参考文献42

  • 1诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:341
  • 3Endsley M R.Design and evaluation for situation awareness enhancement[C]//Proceedings of the Human Factors Society 32nd Annual Meeting.Santa Monica, CA: Human Factors Society, 1988:97-101.
  • 4Bass T, Gruber D.A glimpse into the future of ID[EB/OL]. (1999-09) [2006].http://www.usenix.org/publication/login/1999-9/ fea fures/future.html.
  • 5王东霞,赵刚,李远玲,等.网络安全态势感知技术[C]//全国抗恶劣环境计算机学术年会,2007.
  • 6D'Ambrosio B.Security situation assessment and response evalu- ation (SSARE)[C]//Proceedings DARPA Information Survivability Conference & Exposition II DISCE X' 01.Los Alamitos: IEEE Computer Society, 2001 : 387-394.
  • 7Yegneswaran V, Barford P, Paxson V.Using honeynets for Inter- net situation awareness[C/OL]//Proc of ACM/USENIX Hotnets IV.2005.[2008-01-12].http://www.icir.org/vern/papers/sit-aware-hot- net05.pdf.
  • 8Gorodetsky V, Karsaev O, Samoilov V.On-line update of situa- tion assessment based on asynchronous data streams[C]//Knowl- edge-Based Intelligent Information and Engineering Systems.Ber- lin, Heidelberg .. Springer, 2004 .1136-1142.
  • 9Glenn S.A mathematical theory of evidence[M].Princeton N J: Princeton University Press, 1976.
  • 10Glenn S.Perspectives on the theory and practice of belief ftmc- tions[J].Intemational Journal of Approximate Reasoning, 1990,4: 323-362.

共引文献164

同被引文献74

引证文献10

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部