期刊文献+

无人机骑手联合外卖配送路径优化问题研究 被引量:4

Research on Drones and Riders Joint Take-Out Delivery Routing Problem
下载PDF
导出
摘要 外卖配送是外卖业务中的重要环节,而配送成本和准时送达率是决定外卖配送质量的关键因素,因而对外卖配送路径优化问题的研究尤为重要。基于无人机骑手联合外卖配送模式,引入时空距离度量方法,以最小化送餐成本为目标建立了无人机骑手联合外卖配送的路径优化模型,设计了一种两阶段启发式算法进行求解。第一阶段使用结合K-means的遗传算法对顾客聚类,形成骑手初始路径,第二阶段分别使用改进的变邻域搜索算法和A*算法优化骑手路径和无人机送餐航迹。实验结果表明,与传统骑手配送模式相比,考虑时空距离的无人机骑手联合外卖配送模式能减少送餐成本,提高准时送达率。 Take-out delivery is an important part of takeout business,and the delivery cost and on-time delivery rate are the key factors to determine the quality of take-out delivery,so the research on the optimization of take-out delivery routing is particularly important.Based on an emerging drones and riders joint take-out delivery mode,a temporal-spatial distance measurement method is introduced to establish a routing optimization model for drone rider joint take-out delivery to minimize the cost of food delivery,and a two-stage heuristic algorithm is designed to solve the problem.In the first stage,the genetic algorithm combined with K-means is used to cluster customers and form the initial path of riders.In the second stage,the improved variable neighborhood search algorithm and A*algorithm are respectively used to optimize the path of riders and the flight path of drone food delivery.Finally,a case is designed and solved.The experi-mental results show that,compared with the traditional rider delivery mode,the drones and riders delivery mode consid-ering the temporal-spatial distance can reduce the cost of food delivery and improve the on-time delivery rate.
作者 赵强柱 卢福强 王雷震 王素欣 ZHAO Qiangzhu;LU Fuqiang;WANG Leizhen;WANG Suxin(College of Information Science and Engineering,Northeastern University,Shenyang 110004,China;Northeastern University at Qinhuangdao,Qinhuangdao,Hebei 066004,China;School of Economics and Management,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第11期269-278,共10页 Computer Engineering and Applications
基金 国家自然科学基金重点项目(71831006)。
关键词 外卖配送 无人机 时空距离 路径优化 变邻域搜索算法 take-out delivery drone temporal-spatial distance routing optimization variable neighborhood search
  • 相关文献

参考文献8

二级参考文献48

  • 1蒋忠中,汪定伟.有时间窗车辆路径问题的捕食搜索算法[J].控制与决策,2007,22(1):59-62. 被引量:20
  • 2李兵,郑四发,曹剑东,杨扬,耿华,连小珉.求解客户需求动态变化的车辆路径规划方法[J].交通运输工程学报,2007,7(1):106-110. 被引量:29
  • 3Dantzig G B,Ramser J H.The Truck Dispatching Problem[J].Management Science,1959,6:80-91.
  • 4Laporte G.What you should know about the vehicle routing problem[J].Naval Research Logistics,2007,54:811-819.
  • 5Br(a)ysy O,Gendreau M.Vehicle Routing Problem,Part I:Route Construction and Local Search Algorithms[J].Transportation Science,2005,39(1):104-118.
  • 6Br(a)ysy O,Gendreau M.Vehicle Routing Problem with Time Windows,Part Ⅱ:Metaheuristics[J].Transportation Science,2005,39(1):119-139.
  • 7Gendreau M,Tarantilis C D.Solving large-scale vehicle routing problems with time windows:the state-of-the-art[R].Technical report 2010-04.CIRRELT,Montreal,QC,Canada,2010.
  • 8Mladenovic N,Hansen P.Variable neighborhood search[J].Computers and Operations Research,1997,24:1097-1100.
  • 9Ganesh K,Narendran T T.CLOVES:A Cluster-and-search Heuristic to Solve the Vehicle Routing Problem with Delivery and Pick-up[J].European Journal of Operational Research,2007,178(3):699-717.
  • 10Ostertag L,Doerner K F,Hart R F.A Variable Neighborhood Search Integrated in the POPMUSIC Framework for Solving Large Scale Vehicle Routing Problems[C] //Proceedings of the 5th International Workshop on Hybrid Meta-heuristics,2008.Málaga,Spain,2008:29-42.

共引文献131

同被引文献40

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部