摘要
目前我国生活垃圾分拣的方式仍然以人力为主,其在消耗人力的同时还存在工作强度高、效率低以及影响环卫工人身体健康等缺陷。为解决以上问题,文章以STM32为主控芯片,以树莓派为运算部件,设计出以四轴机械臂、机械爪以及传感器为机械部件并辅以YOLOv5深度学习识别模型的智能垃圾分拣小车。在实现垃圾分拣一体化的同时,还部分解决了人工垃圾分拣的缺陷。
At present,the sorting method of domestic waste in my country is still mainly manpower,which consumes manpower and also has defects such as high work intensity,low efficiency and affecting the health of sanitation workers.In order to solve the above problems,this paper takes STM32 as the main control chip and raspberry pie as the calculation part,and designs an intelligent garbage sorting trolley with four-axis mechanical arm,mechanical claw and sensor as the mechanical parts,supplemented by YOLOv5 deep learning recognition mode.While realizing the integration of waste sorting,it also partially solves the defects of artificial waste sorting.
作者
高少伟
郭磊
陈其菠
陈帅兴
GAO Shaowei;GUO Lei;CHEN Qibo;CHEN Shuaixing(Guangdong Ocean University,Zhanjiang 524088,China)
出处
《现代信息科技》
2022年第2期180-182,共3页
Modern Information Technology
基金
广东海洋大学创新创业训练计划项目资助(CXXL2021279)。
关键词
机器视觉
智能
垃圾分拣小车
machine vision
intelligence
garbage sorting trolley