期刊文献+

基于候选区域对比度的显示屏缺陷检测方法 被引量:2

Screen Defect Detection Method Based on Candidate-area-contrast
下载PDF
导出
摘要 显示屏在生产、组装过程中易出现多种类型的缺陷,传统的人工检测方法工作量大,主观性强,检测标准难以量化,误判率高。为此,提出一种使用折线阈值对候选区域对比度进行阈值判断的显示屏缺陷检测方法。通过计算候选区域对比度来检出点状、块状、Mura缺陷,候选区域对比度的计算方式克服了显示屏亮度不均匀产生的影响,使用折线阈值对候选区域对比度进行阈值判断,提高了低对比度Mura缺陷的检测精度。 Screens are prone to many types of defects during the production and assembly process,the traditional manual detection method has a heavy workload and strong subjectivity,the detection standard is difficult to quantify,and the misjudg-ment rate is high.A defect detection method for screen using broken line threshold to judge the candidate-area-contrast is proposed in this paper.The dot,block,and Mura defects are detected by calculating the candidate-defect-contrast,the calculation method of candidate-area-contrast overcomes the influence caused the uneven brightness of the screen,the broken-line thresholding is used to threshold candidate-area-contrast,which improves the detection accuracy of low-contrast Mura defects.
作者 罗文君 汪二虎 Luo Wenjun
出处 《工业控制计算机》 2022年第5期67-69,共3页 Industrial Control Computer
关键词 缺陷检测 Mura缺陷 候选区域对比度 折线阈值 defect detection Mura defect candidate-area-contrast broken-line thresholding
  • 相关文献

参考文献6

二级参考文献53

  • 1张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 2山世光,高文,唱轶钲,曹波,陈熙霖.人脸识别中的“误配准灾难”问题研究[J].计算机学报,2005,28(5):782-791. 被引量:18
  • 3高阳,李言俊,张科.非均匀背景下的红外图像曲面拟合分割[J].光电工程,2006,33(7):83-87. 被引量:3
  • 4张昱,张健.基于多项式曲面拟合的TFT-LCD斑痕缺陷自动检测技术[J].光电工程,2006,33(10):108-114. 被引量:19
  • 5J.G. Daugman, “Uncertainty Relation for Resolution in Space,Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters,” J. Optical Soc.Amer., 2(7):1160-1169, 1985.
  • 6J.G. Daugman. Complete discrete 2-D Gabor Transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics , Speech and Signal Processing,1988,36 ( 7) :1169-1179.
  • 7Ian T. Young,Ian T. Young and Michael van Ginkel,“Recursive Gabor Filtering”,IEEE Transactions on signal processing,50(11):2798-2805,2002.
  • 8Ahmed Bilal Ashraf,Simon Lucey,Tsuhan Chen,“Reinterpreting the Application of Gabor Filters as a Manipulation of the Margin in Linear Support Vector Machines”,IEEE Transactions on pattern analysis and machine intelligence,32(7):1335-1341,2010.
  • 9Lee T S. Image representation using 2D Gabor wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence , 18(10) :959-971 ,1996.
  • 10M.Lades, J.C.Vorbruggen, J.Buhmann, J.Lange, C.v.d.Malsburg, R.P.Wurtz, W.Konen, Distortion Invariant Object Recognition in the Dynamic Link Architecture, IEEE Transactions On Computers, 42(3), pp 300-311, 1993.

共引文献88

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部