摘要
Applying mixed oxygen ionic and electronic conducting(MIEC)oxides as the cathode offers a promis-ing solution to enhance the performance of solid oxide fuel cells(SOFCs).However,the phase instability in CO_(2)-containing air and sluggish oxygen reduction activity of MIEC cathodes remain a long-term chal-lenge for optimizing the electrochemical performance of SOFCs.Herein,a heterovalent co-doping strategy is proposed to enhance the oxygen reduction activity and CO_(2)tolerance of SOFCs cathodes,which can be demonstrated by developing a novel BaCo_(0.6)Fe_(0.4)O_(3)-δ(BCF)-based MIEC oxide,BaCo_(0.6)Fe_(0.2)Sn_(0.1) Y_(0.1)O_(3-δ)(BCFSY).In addition to improving the stability of BCF-based perovskites,this strategy achieves an opti-mized balance of ionic mobility and oxygen vacancies due to the synergies between the effects of the co-dopants.Compared with single-doped materials,BCFSY exhibits improved CO_(2)tolerance and consider-ably higher ORR activity,which is reflected in a significantly lower polarization resistance of 0.15Ωcm^(2) at 600℃.The results of this work provide an efficient tactic for designing electrode materials for SOFCs.
基金
supported by the National Natural Science Foundation of China (No. 22078022)
China Postdoctoral Science Foundation (No.2021M690379)