期刊文献+

THz trapped ion model and THz spectroscopy detection of potassium channels 被引量:1

原文传递
导出
摘要 Advanced molecular dynamics(MD)simulation and infrared(IR)spectroscopy have been widely adopted to reveal the detailed dynamic process of high-speed selective permeability of potassium channels.Yet these MD simulations cannot avoid the choice of empirical molecular force fields and high transmembrane voltages(as driving electric fields for ions)far exceeding physiological levels.Moreover,the IR spectroscopy method usually requires isotope labels for carbonyl groups of the channels,which may change the original permeation process.Here,we build the terahertz(THz)trapped ion model for the selectivity filter(SF)of potassium channels KcsA based on the density functional theory(DFT)calculation of ion potentials.In this model,the zero-point energy of trapped ions and quantum tunneling effect provide the physical basis for near diffusion limited permeation rates of ions and explain the high driving electric field in MD simulations.Quantitative calculations of zero-point energy and tunneling probability show that the quantum effect assisted knock-on mechanism may help to realize the physiological functions of potassium channels.Furthermore,based on the trapped ion model,we calculated the ion decoherence timescale under the influence of protein environmental noise.We use the quantum optics method to describe the interaction between THz waves and the trapped ion.Then the novel THz spectroscopy approaches through the THz resonance fluorescence and the intense field non-resonant effect are presented theoretically.These are expected to be isotope label-free detective methods of the rapid ion permeation dynamics.
出处 《Nano Research》 SCIE EI CSCD 2022年第4期3825-3833,共9页 纳米研究(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Nos.61921002 and 61988102).
  • 相关文献

二级参考文献1

共引文献12

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部