期刊文献+

基于Hilbert-Huang变换和BP神经网络的核级电动阀门退化趋势预测

Degradation Trend Prediction of Nuclear-level Electric Valve Based on Hilbert-Huang Transform and BP Neural Network
原文传递
导出
摘要 核级电动阀门服役环境恶劣,极易发生退化失效。为准确预测核级电动阀门性能退化趋势,采用Hilbert-Huang变换(HHT)和反向传播神经网络(BPNN)相结合的方法(HHT-BPNN)对核级电动阀门的退化状态进行预测。本文采用某次核级电动阀门可靠性试验的振动信号对电动阀门退化趋势进行预测,结果显示该方法能准确预测出核级电动阀门的3种退化状态,且其相对误差在可接受范围内。研究表明HHT能够有效提取信号的退化信息,BPNN能够准确预测核级电动阀门的退化趋势,HHT-BPNN预测方法能有效解决核级电动阀门性能退化预测困难的问题。 Due to the harsh service environment of nuclear-level electric valves,degradation and failure are easy to occur.Therefore,in order to accurately predict the performance degradation trend of nuclear-level electric valves,this study adopts a method based on Hilbert-Huang transform(HHT)and BP neural network(BPNN)combined method(HHT-BPNN)to predict the degradation state of nuclear-level electric valve.In this paper,the vibration signal of a nuclear-level electric valve reliability test is used to predict the degradation trend of the electric valve.The results show that the method can accurately predict the three degradation states of the nuclear-level electric valve,and the relative error is within the acceptable range.The analysis and research results show that HHT can effectively extract the degradation information of the signal,and BPNN can accurately predict the degradation trend of nuclear-level electric valves.The HHT-BPNN prediction method can effectively solve the difficulty of predicting the performance degradation of nuclear-level electric valves.
作者 刘杰 张林 王运生 闫晓 湛力 欧柱 Liu Jie;Zhang Lin;Wang Yunsheng;Yan Xiao;Zhan Li;Ou Zhu(Nuclear Power Institute of China,Chengdu,610213,China;University of Electronic Science and Technology of China,Chengdu,611731,China)
出处 《核动力工程》 EI CAS CSCD 北大核心 2022年第3期179-184,共6页 Nuclear Power Engineering
关键词 核级电动阀门 Hilbert-Huang变换(HHT) 反向传播神经网络(BPNN) 退化预测 Nuclear-level electric valve Hilbert-Huang transform(HHT) BP neural network(BPNN) Degradation prediction
  • 相关文献

参考文献4

二级参考文献21

  • 1熊晋魁,谢春玲,施小成,张洪国,孙铁利.RBF人工神经网络在核电厂故障诊断中的应用[J].核动力工程,2006,27(3):57-60. 被引量:9
  • 2HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 3HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
  • 4LIU B, RIEMENSCHNEIDER S, XU Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrmn [J]. Mechanical Systems and Signal Processing, 2006, 20. 718-734.
  • 5RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21: 2607-2615.
  • 6BABU T R, SRIKANTH S, SEKHAR A S. Hilbert-Huang transform for detection and monitoring of crack in a transient rotor [J]. Mechanical Systems and Signal Processing, 2008, 22: 905-914.
  • 7LI Y J, TSE P W, YANG X, et al. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine [J]. Mechanical Systems and Signal Processing, 2010, 24: 193-210.
  • 8WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 : 1-41.
  • 9CHU F L, LU W X. Experimental observation of nonlinear vibrations in a rub-impact rotor system [J]. Journal of Sound and Vibration, 2005, 283: 621-643.
  • 10雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7):112-117. 被引量:106

共引文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部