摘要
为快速有效确定充填体单轴抗压强度,以灰砂比、固体含量和养护龄期作为输入因子,充填体单轴抗压强度作为输出因子,建立一种粒子群优化算法(PSO),对支持向量机(SVM)参数进行全局优化的预测模型。结果表明,该模型预测性能较好,相关系数高(训练集为0.996,测试集为0.993),均方误差值低(训练集为0.000393,测试集为0.00072613);通过室内试验对采集的216个试样进行预测与对比,证明模型可以准确地预测充填体单轴抗压强度,大幅度减少物理试验量及缩短试验周期,为矿山充填提供一种新思路。
In order to quickly and effectively determine the strength of the backfill,a particle swarm optimization algorithm(PSO)was established for the global optimization of the support vector machine parameters by taking the ratio of lime to sand,solid content and curing age as input factors,and the output factor as the uniaxial compressive strength of the backfill.The research results show that the model had good prediction performance,achieving high correlation coefficients(training set 0.996,test set 0.993),and low mean square error value(training set is 0.000393,test set is 0.00072613).The comparison and prediction of 216 samples collected through indoor experiments proved that the model could accurately predict the strength of the filling body,greatly reduce the amount of physical test and the test period,and provide a new idea for mine filling.
作者
黄晓红
崔贺佳
刘志义
刘利平
张凯月
HUANG Xiaohong;CUI Hejia;LIU Zhiyi;LIU Liping;ZHANG Kaiyue(College of Information Engineering,North China University of Science and Technology,Tangshan 063210,Hebei,China;College of Mining Engineering,North China University of Science and Technology,Tangshan 063210,Hebei,China;Development and Safety Key Lab of Hebei Province,Tangshan 063210,Hebei,China)
出处
《河南理工大学学报(自然科学版)》
CAS
北大核心
2022年第3期32-37,共6页
Journal of Henan Polytechnic University(Natural Science)
基金
国家自然科学基金资助项目(51774137)
河北省高等学校科学技术重点研究项目(ZD2020152)。
关键词
粒子群优化算法
单轴抗压强度预测
充填体
支持向量机
particle swarm optimization algorithm
prediction of the uniaxial compressive strength
backfill
support vector machine