期刊文献+

基于改进粒子群算法的配电网多目标优化控制 被引量:11

Multi-Objective Optimal Control of Distribution Networks Based on Improved Particle Swarm Algorithm
下载PDF
导出
摘要 随着光伏机组大量接入配电网,需要在增加间歇性可再生能源使用的同时,保持电力系统的电压稳定。储能技术的快速发展允许部署储能系统来支持电压调节。为了在光伏储能优化出力系统中达到网络损耗和调压措施成双优化的目的,提出了一种改进的Pareto档案粒子群多目标优化算法。在非支配排序环节计算拥挤距离时,加入小生境技术,避免陷入局部最优同时,增加Pareto解集分布的多样性。基于IEEE 30配电网系统测试了所提出的PV-ESS(photovoltaic-energy-storage-system)优化方法。结果证明,该算法对抑制光波动、提高电压稳定性以及降低网损有着良好的表现,进而维护系统运行的稳定性,降低电力行业经济成本。 As a large number of photovoltaic units are connected to the distribution network,it is necessary to maintain voltage stability of the power system while increasing the use of intermittent renewable energy.Rapid advances in energy storage technology allow the deployment of energy storage systems to support voltage regulation.To achieve the dual optimization of network losses and the cost of voltage regulation measures in a PV energy storage optimized power system,an improved Pareto archival particle swarm multiobjective optimization algorithm is proposed in this paper.The Niche technique is added to the calculation of the congestion distance in the non-dominated ranking link to avoid falling into a local optimum while increasing the diversity of the Pareto solution set distribution.The proposed PV-ESS(photovoltaic energy storage system)optimization method is tested based on the IEEE 30 distribution grid system.The results demonstrate that the algorithm performs well in suppressing light fluctuations,improving voltage stability and reducing network losses,which in turn maintains the stability of system operation and reduces the cost of voltage regulation measures and power industry costs.
作者 曹锦 陆飞 江友华 CAO Jin;LU Fei;JIANG Youhua(School of Electronic and Information Engineering,Shanghai Electric Power University,Shanghai 200090,China;School of Electrical Engineering,Shanghai Electric Power University,Shanghai 200090,China)
出处 《电网与清洁能源》 北大核心 2022年第5期95-103,共9页 Power System and Clean Energy
基金 上海市自然科学基金(21ZR1424800)。
关键词 储能系统 微电网 多目标优化 粒子群算法 PARETO优化 energy storage system microgrid multiobjective optimization particle swarm algorithm Pareto optimization
  • 相关文献

参考文献9

二级参考文献98

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2韦钢,吴伟力,胡丹云,李智华.分布式电源及其并网时对电网的影响[J].高电压技术,2007,33(1):36-40. 被引量:193
  • 3Dorigo M, Maniezzo V, Colorni A. The ant system:Optimization by a colony of cooperating agents [J].IEEE Trans on SMC, 1996,26(1):28-41.
  • 4Dorigo M, Gambardella L M. Ant colony system.. A cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computing,1997,1 (1) : 53-56.
  • 5Colorni A, Dorigo M, Maniezzo V. Ant colony system for job-shop scheduling [J]. Belgian J of Operations Research Statistics and Computer Science, 1994,34 (1):39-53.
  • 6Maniezzo V. Exact and approximate nondeterministic tree search procedures for the quadratic assignment problem[J]. Informs J of Computer, 1999, (11) :358-369.
  • 7Bilchev G, Parmee I C. The ant colony metaphor for searching continuous design spaces[J]. Lecture Notesin Computer Science, 1995, 993:25-39.
  • 8Johann Dr6o, Patrick Siarry. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[A].Proc of the 3rd Int Workshop on Ant Algorithms ANTS'2002[C]. Brussels, 2002: 216-221.
  • 9Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele.Comparison of multiobjective evolutionary algorithms : Empirical results [ J ]. Evolutionary Computation, 2000, 8(2) ,173-195.
  • 10李振坤,陈星莺,余昆,刘皓明,赵波.配电网重构的混合粒子群算法[J].中国电机工程学报,2008,28(31):35-41. 被引量:143

共引文献226

同被引文献178

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部