期刊文献+

基于FeSiB/PZT-fiber/FeSiB磁电复合材料的分芯式电流传感器研究

Split-core current sensor based on FeSiB/PZT-fiber/FeSiB magnetoelectric composite
原文传递
导出
摘要 提出了一种由对称的FeSiB/PZT-fiber/FeSiB(FPF)磁电复合材料、三块硅钢磁芯、一对永磁铁和一个封装外壳组成的分芯式电流传感器。FPF复合材料与三块磁芯串联,形成闭合磁路,汇聚载流导线产生的涡流磁场。实验结果表明,在无源条件下,FPF电流传感器在0~5.5 A电流范围内对50 Hz工频电流的监测灵敏度为0.45 mV/A,线性吻合度为99.9%。因此,所提出的基于FPF复合材料的分芯式电流传感器有望为电力系统工频小电流在线监测提供新的思路,具有重要的应用价值。 In this paper,a split-core current sensor consisting of symmetrical FeSiB/PZT-fiber/FeSiB(FPF)magnetoelectric composite,three silicon steel cores,a pair of permanent magnets and a packaged shell is proposed.The FPF composite is connected in series with three cores to form a closed magnetic circuit which can converge the eddy-current magnetic field generated by the current-carrying wire.According to the experimental results,in the passive case,the monitoring sensitivity of the current sensor based on FPF composite to the 50Hz power frequency current is 0.45 mV/A,and the linear coincidence is 99.9%in the range of 0-5.5 A.Therefore,the proposed split-core current sensor based on FPF composite will provide new ideas for the online monitering of power frequency weak current in smart gird system,which has significant application value.
作者 王景琦 王楠 夏明强 鲁彩江 曹中清 张紫嫣 WANG Jingqi;WANG Nan;XIA Mingqiang;LU Caijiang;CAO Zhongqing;ZHANG Ziyan(School of mechanical engineering,Southwest Jiaotong University,Chengdu 610031,China;Sichuan Key Laboratory of rail transit operation and maintenance technology and equipment,Chengdu 610031,China;Chongqing Chuanyi Automation Co.,Ltd.,Chongqing 4000700,China)
出处 《自动化与仪器仪表》 2022年第5期194-196,209,共4页 Automation & Instrumentation
基金 国家自然科学基金(61801402,52175519) 四川省杰出青年科技人才项目(2020JDJQ0038) 国网江西省电力有限公司重点科技项目(521852210015) 贵州省科技创新人才技术团队(黔科合平台人才[2020]5015)。
关键词 分芯式电流传感器 磁电层合材料 小电流监测 工频电流 split-core current sensor magneoelectric composite weak current monitering power frequency current
  • 相关文献

参考文献2

二级参考文献31

  • 1刘小辉,屈绍波,陈江丽,徐卓.磁电材料的研究进展及发展趋势[J].稀有金属材料与工程,2006,35(A02):13-16. 被引量:7
  • 2YANG J, WEN Y M, LI P, et al. A two-dimensionalbroadband vibration energy harvester using magnetoelec-tric transducer [J]. Applied Physics Letters. 2013,103(24) ;243903.
  • 3DAI X ZH, WEN Y M, U P,et al. Energy harvestingfrom mechanical vibrations using multiple magnetostric-tive/ piezoelectric composite transducers [ J ]. Sensorsand Actuators A; Physical. 2011,166(1) ; 94-101.
  • 4LI M, WEN Y M, LI P. A resonant frequency self-tuna-ble rotation energy harvester based on magneto-electrictransducer [ J ]. Sensors and Actuators A : Physical,2013,194(1) : 16-24.
  • 5LI P, WEN Y M. A magnetoelectric composite energyharvester and power management circuit [ J ]. IEEEtransactions on Industrial Electronics, 2011,58 (7):2944-2951.
  • 6HE W, LI P, WEN Y M. Piezoelectric energy harvesterscavenging AC magnetic field energy from electric powerlines [ J ]. Sensors and Actuators A: Physical, 2013 ,193(15) ; 59-68.
  • 7CAI F, FARANTATOS E. Self-powered smart meter withsynchronized data[ C] . IEEE Radio and Wireless Sympo-sium (RWS2012),2012:395-398.
  • 8MOGHE R. Smart “Stick-on” Sensors for the SmartGrid [ J ]. IEEE Transactions on Smart Grid, 2012,3(1) ; 241-252.
  • 9PAPROTNY I, XU Q L. Electromechanical energy scav-enging from current carrying conductors [ J] . IEEE Sen-sors Journal, 2013, 13(1) : 190-201.
  • 10LELAND E S. A new MEMS sensor for AC electric cur-rent [C] . Proc. IEEE Sensors, 2010:1177-1182.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部