期刊文献+

基于交叉算子的反向梯度优化算法

A Reverse Gradient Optimization Algorithm Based on Crossover Operator
下载PDF
导出
摘要 梯度优化算法(Gradient-based optimizer,GBO)是从牛顿法中得到启发,采用梯度搜索规则(GSR)和局部逃逸算子(LEO)进行搜索的一种新算法.针对算法求解精度低、收敛速度慢及容易陷入局部最优的不足,提出了一种基于交叉算子的反向梯度优化算法(MGBO).该算法将每次迭代所得种群中较差的一半个体与当前最优个体进行两两交叉以提高解的精度并增加种群多样性;然后对搜索后所得种群中所有个体进行反向学习操作,使得算法有能力逃离局部最优.在9个基准函数上的实验结果表明,改进算法的收敛速度和求解精度得到较大的提升. Gradient-based optimizer(GBO)is a new algorithm inspired from Newton's method,which searches for optimal solutions by using gradient search rule(GSR)and local escape operator(LEO).Aiming at the shortcomings of low solution accuracy,slow convergence and easy to fall into local optimum,a reverse gradient optimization algorithm based on crossover operator(Modified Gradient-Based Optimizer,MGBO)is proposed.The proposed algorithm crosses the worse half of the population in each iteration with the current best individual to improve the solution accuracy and increase the population diversity.Then,it performs the opposition-based learning operation for all individuals in the population after the search,and the algorithm has the ability to escape from the local optimum.The experimental results on nine benchmark functions show that the convergence speed and solution accuracy of the improved algorithm are greatly improved.
作者 吴芸 程冲华 江海新 刘俊峰 李进 WU Yun;CHENG Chong-hua;JIANG Hai-xin;LIU Jun-feng;LI Jin(College of Science,Jiujiang University,Jiujiang 332005,China;State Key Laboratory of Industry Control Technology,College of Control Science&Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《西安文理学院学报(自然科学版)》 2022年第2期44-52,共9页 Journal of Xi’an University(Natural Science Edition)
基金 国家自然科学基金(11861040) 江西省教育厅科技项目(GJJ170951,GJJ201814,GJJ211823,GJJ211825) 九江学院大学生创新创业训练计划项目(x202111843144,x202111843150)。
关键词 梯度优化算法 收敛精度 交叉算子 反向学习 gradient optimization algorithm convergence accuracy crossover operator opposition-based learning
  • 相关文献

参考文献4

二级参考文献47

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2王晖.区域变换搜索的智能算法研究[D].武汉:武汉大学,2011.
  • 3汪靖.群体智能优化算法及其在GPU上的并行化研究[D].武汉:武汉大学,2011.
  • 4Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine, 2002,22: 52-67.
  • 5Tripathy M, Mishra S.Bacteria foraging-based to optimize both real power loss and voltage stability limit[J].IEEE Transac?tions on Power Systems, 2007 ,22( 1) :240-248.
  • 6Li M S, Tang W J, Tang W H, et al.Bacterial foraging algo?rithm with varying population for optimal power flow[C]11 Proc of Evol Workshops, 2007 , 4448: 32-41.
  • 7Abraham A, Biswas A, Dasgupta S, et al.Analysis of repro?duction operator in bacterial foraging optimization[C]IIPro?ceedings of the IEEE Congress on Evolutionary Computation (CEC 2008) ,2008: 1476-1483.
  • 8Lei Xiujuan, Wu Shuang, Ge Liang, et al.Clustering and over?lapping modules detection in PPI network based on IBFO[J]. Proteomics, 2013,13 (2) : 278-290.
  • 9Kim D H, Abraham A, Cho J H.A hybrid genetic algorithm and bacterial foraging approach for global optimization[J]. Information Sciences, 2007 , 177( 18) : 3918-3937.
  • 10Das S, Biswas A, Dasgupta S, et al.Bcterial foraging optimi?zation algorithm: theoretical foundations, analysis, and applica?tions[J].Foundations of Comput Intel, 2009,3: 23-55.

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部